Notebook Images

Download Notebook Images PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Notebook Images book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
MLOps with Red Hat OpenShift

Build and manage MLOps pipelines with this practical guide to using Red Hat OpenShift Data Science, unleashing the power of machine learning workflows Key Features Grasp MLOps and machine learning project lifecycle through concept introductions Get hands on with provisioning and configuring Red Hat OpenShift Data Science Explore model training, deployment, and MLOps pipeline building with step-by-step instructions Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionMLOps with OpenShift offers practical insights for implementing MLOps workflows on the dynamic OpenShift platform. As organizations worldwide seek to harness the power of machine learning operations, this book lays the foundation for your MLOps success. Starting with an exploration of key MLOps concepts, including data preparation, model training, and deployment, you’ll prepare to unleash OpenShift capabilities, kicking off with a primer on containers, pods, operators, and more. With the groundwork in place, you’ll be guided to MLOps workflows, uncovering the applications of popular machine learning frameworks for training and testing models on the platform. As you advance through the chapters, you’ll focus on the open-source data science and machine learning platform, Red Hat OpenShift Data Science, and its partner components, such as Pachyderm and Intel OpenVino, to understand their role in building and managing data pipelines, as well as deploying and monitoring machine learning models. Armed with this comprehensive knowledge, you’ll be able to implement MLOps workflows on the OpenShift platform proficiently.What you will learn Build a solid foundation in key MLOps concepts and best practices Explore MLOps workflows, covering model development and training Implement complete MLOps workflows on the Red Hat OpenShift platform Build MLOps pipelines for automating model training and deployments Discover model serving approaches using Seldon and Intel OpenVino Get to grips with operating data science and machine learning workloads in OpenShift Who this book is for This book is for MLOps and DevOps engineers, data architects, and data scientists interested in learning the OpenShift platform. Particularly, developers who want to learn MLOps and its components will find this book useful. Whether you’re a machine learning engineer or software developer, this book serves as an essential guide to building scalable and efficient machine learning workflows on the OpenShift platform.
Computer Analysis of Images and Patterns

The two volume set LNCS 10424 and 10425 constitutes the refereed proceedings of the 17th International Conference on Computer Analysis of Images and Patterns, CAIP 2017, held in Ystad, Sweden, in August 2017. The 72 papers presented were carefully reviewed and selected from 144 submissions The papers are organized in the following topical sections: Vision for Robotics; Motion and Tracking; Segmentation; Image/Video Indexing and Retrieval; Shape Representation and Analysis; Biomedical Image Analysis; Biometrics; Machine Learning; Image Restoration; and Poster Sessions.
High Performance Computing

This book constitutes the refereed post-conference proceedings of 9 workshops held at the 35th International ISC High Performance 2021 Conference, in Frankfurt, Germany, in June-July 2021: Second International Workshop on the Application of Machine Learning Techniques to Computational Fluid Dynamics and Solid Mechanics Simulations and Analysis; HPC-IODC: HPC I/O in the Data Center Workshop; Compiler-assisted Correctness Checking and Performance Optimization for HPC; Machine Learning on HPC Systems;4th International Workshop on Interoperability of Supercomputing and Cloud Technologies;2nd International Workshop on Monitoring and Operational Data Analytics;16th Workshop on Virtualization in High-Performance Cloud Computing; Deep Learning on Supercomputers; 5th International Workshop on In Situ Visualization. The 35 papers included in this volume were carefully reviewed and selected. They cover all aspects of research, development, and application of large-scale, high performance experimental and commercial systems. Topics include high-performance computing (HPC), computer architecture and hardware, programming models, system software, performance analysis and modeling, compiler analysis and optimization techniques, software sustainability, scientific applications, deep learning. Chapter “Machine-Learning-Based Control of Perturbed and Heated Channel Flows” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.