Normal Modes And Localization In Nonlinear Systems


Download Normal Modes And Localization In Nonlinear Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Normal Modes And Localization In Nonlinear Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Normal Modes and Localization in Nonlinear Systems


Normal Modes and Localization in Nonlinear Systems

Author: Alexander F. Vakakis

language: en

Publisher: John Wiley & Sons

Release Date: 2008-07-11


DOWNLOAD





This landmark book deals with nonlinear normal modes (NNMs) and nonlinear mode localization. Offers an analysis which enables the study of various nonlinear phenomena having no counterpart in linear theory. On a more theoretical level, the concept of NNMs will be shown to provide an excellent framework for understanding a variety of distinctively nonlinear phenomena such as mode bifurcations and standing or traveling solitary waves.

Normal Modes and Localization in Nonlinear Systems


Normal Modes and Localization in Nonlinear Systems

Author: Alexander F. Vakakis

language: en

Publisher: Springer

Release Date: 2013-01-11


DOWNLOAD





The nonlinear normal modes of a parametrically excited cantilever beam are constructed by directly applying the method of multiple scales to the governing integral-partial differential equation and associated boundary conditions. The effect of the inertia and curvature nonlin earities and the parametric excitation on the spatial distribution of the deflection is examined. The results are compared with those obtained by using a single-mode discretization. In the absence of linear viscous and quadratic damping, it is shown that there are nonlinear normal modes, as defined by Rosenberg, even in the presence of a principal parametric excitation. Furthermore, the nonlinear mode shape obtained with the direct approach is compared with that obtained with the discretization approach for some values of the excitation frequency. In the single-mode discretization, the spatial distribution of the deflection is assumed a priori to be given by the linear mode shape ¢n, which is parametrically excited, as Equation (41). Thus, the mode shape is not influenced by the nonlinear curvature and nonlinear damping. On the other hand, in the direct approach, the mode shape is not assumed a priori; the nonlinear effects modify the linear mode shape ¢n. Therefore, in the case of large-amplitude oscillations, the single-mode discretization may yield inaccurate mode shapes. References 1. Vakakis, A. F., Manevitch, L. I., Mikhlin, Y. v., Pilipchuk, V. N., and Zevin A. A., Nonnal Modes and Localization in Nonlinear Systems, Wiley, New York, 1996.

Normal Modes and Localization in Nonlinear Systems


Normal Modes and Localization in Nonlinear Systems

Author: Alexander F. Vakakis

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-06-29


DOWNLOAD





The nonlinear normal modes of a parametrically excited cantilever beam are constructed by directly applying the method of multiple scales to the governing integral-partial differential equation and associated boundary conditions. The effect of the inertia and curvature nonlin earities and the parametric excitation on the spatial distribution of the deflection is examined. The results are compared with those obtained by using a single-mode discretization. In the absence of linear viscous and quadratic damping, it is shown that there are nonlinear normal modes, as defined by Rosenberg, even in the presence of a principal parametric excitation. Furthermore, the nonlinear mode shape obtained with the direct approach is compared with that obtained with the discretization approach for some values of the excitation frequency. In the single-mode discretization, the spatial distribution of the deflection is assumed a priori to be given by the linear mode shape ¢n, which is parametrically excited, as Equation (41). Thus, the mode shape is not influenced by the nonlinear curvature and nonlinear damping. On the other hand, in the direct approach, the mode shape is not assumed a priori; the nonlinear effects modify the linear mode shape ¢n. Therefore, in the case of large-amplitude oscillations, the single-mode discretization may yield inaccurate mode shapes. References 1. Vakakis, A. F., Manevitch, L. I., Mikhlin, Y. v., Pilipchuk, V. N., and Zevin A. A., Nonnal Modes and Localization in Nonlinear Systems, Wiley, New York, 1996.