Nonparametric Statistics Theory And Methods

Download Nonparametric Statistics Theory And Methods PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Nonparametric Statistics Theory And Methods book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Concepts of Nonparametric Theory

Author: J.W. Pratt
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
This book explores both non parametric and general statistical ideas by developing non parametric procedures in simple situations. The major goal is to give the reader a thorough intuitive understanding of the concepts underlying nonparametric procedures and a full appreciation of the properties and operating characteristics of those procedures covered. This book differs from most statistics books by including considerable philosophical and methodological discussion. Special attention is given to discussion of the strengths and weaknesses of various statistical methods and approaches. Difficulties that often arise in applying statistical theory to real data also receive substantial attention. The approach throughout is more conceptual than mathematical. The "Theorem-Proof" format is avoided; generally, properties are "shown," rather than "proved." In most cases the ideas behind the proof of an im portant result are discussed intuitively in the text and formal details are left as an exercise for the reader. We feel that the reader will learn more from working such things out than from checking step-by-step a complete presen tation of all details.
Nonparametric Statistical Methods

Praise for the Second Edition “This book should be an essential part of the personal library of every practicing statistician.”—Technometrics Thoroughly revised and updated, the new edition of Nonparametric Statistical Methods includes additional modern topics and procedures, more practical data sets, and new problems from real-life situations. The book continues to emphasize the importance of nonparametric methods as a significant branch of modern statistics and equips readers with the conceptual and technical skills necessary to select and apply the appropriate procedures for any given situation. Written by leading statisticians, Nonparametric Statistical Methods, Third Edition provides readers with crucial nonparametric techniques in a variety of settings, emphasizing the assumptions underlying the methods. The book provides an extensive array of examples that clearly illustrate how to use nonparametric approaches for handling one- or two-sample location and dispersion problems, dichotomous data, and one-way and two-way layout problems. In addition, the Third Edition features: The use of the freely available R software to aid in computation and simulation, including many new R programs written explicitly for this new edition New chapters that address density estimation, wavelets, smoothing, ranked set sampling, and Bayesian nonparametrics Problems that illustrate examples from agricultural science, astronomy, biology, criminology, education, engineering, environmental science, geology, home economics, medicine, oceanography, physics, psychology, sociology, and space science Nonparametric Statistical Methods, Third Edition is an excellent reference for applied statisticians and practitioners who seek a review of nonparametric methods and their relevant applications. The book is also an ideal textbook for upper-undergraduate and first-year graduate courses in applied nonparametric statistics.
All of Nonparametric Statistics

Author: Larry Wasserman
language: en
Publisher: Springer Science & Business Media
Release Date: 2006-09-10
There are many books on various aspects of nonparametric inference such as density estimation, nonparametric regression, bootstrapping, and wavelets methods. But it is hard to ?nd all these topics covered in one place. The goal of this text is to provide readers with a single book where they can ?nd a brief account of many of the modern topics in nonparametric inference. The book is aimed at master’s-level or Ph. D. -level statistics and computer science students. It is also suitable for researchersin statistics, machine lea- ing and data mining who want to get up to speed quickly on modern n- parametric methods. My goal is to quickly acquaint the reader with the basic concepts in many areas rather than tackling any one topic in great detail. In the interest of covering a wide range of topics, while keeping the book short, I have opted to omit most proofs. Bibliographic remarks point the reader to references that contain further details. Of course, I have had to choose topics to include andto omit,the title notwithstanding. For the mostpart,I decided to omit topics that are too big to cover in one chapter. For example, I do not cover classi?cation or nonparametric Bayesian inference. The book developed from my lecture notes for a half-semester (20 hours) course populated mainly by master’s-level students. For Ph. D.