Nonlinear Singular Perturbation Problems

Download Nonlinear Singular Perturbation Problems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Nonlinear Singular Perturbation Problems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Nonlinear Singular Perturbation Phenomena

Author: K. W. Chang
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
Our purpose in writing this monograph is twofold. On the one hand, we want to collect in one place many of the recent results on the exist ence and asymptotic behavior of solutions of certain classes of singularly perturbed nonlinear boundary value problems. On the other, we hope to raise along the way a number of questions for further study, mostly ques tions we ourselves are unable to answer. The presentation involves a study of both scalar and vector boundary value problems for ordinary dif ferential equations, by means of the consistent use of differential in equality techniques. Our results for scalar boundary value problems obeying some type of maximum principle are fairly complete; however, we have been unable to treat, under any circumstances, problems involving "resonant" behavior. The linear theory for such problems is incredibly complicated already, and at the present time there appears to be little hope for any kind of general nonlinear theory. Our results for vector boundary value problems, even those admitting higher dimensional maximum principles in the form of invariant regions, are also far from complete. We offer them with some trepidation, in the hope that they may stimulate further work in this challenging and important area of differential equa tions. The research summarized here has been made possible by the support over the years of the National Science Foundation and the National Science and Engineering Research Council.
The Theory of Singular Perturbations

The subject of this textbook is the mathematical theory of singular perturbations, which despite its respectable history is still in a state of vigorous development. Singular perturbations of cumulative and of boundary layer type are presented. Attention has been given to composite expansions of solutions of initial and boundary value problems for ordinary and partial differential equations, linear as well as quasilinear; also turning points are discussed.The main emphasis lies on several methods of approximation for solutions of singularly perturbed differential equations and on the mathematical justification of these methods. The latter implies a priori estimates of solutions of differential equations; this involves the application of Gronwall's lemma, maximum principles, energy integrals, fixed point theorems and Gåding's theorem for general elliptic equations. These features make the book of value to mathematicians and researchers in the engineering sciences, interested in the mathematical justification of formal approximations of solutions of practical perturbation problems. The text is selfcontained and each chapter is concluded with some exercises.