Nonlinear Physics From Vibration Control To Rogue Waves And Beyond

Download Nonlinear Physics From Vibration Control To Rogue Waves And Beyond PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Nonlinear Physics From Vibration Control To Rogue Waves And Beyond book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Nonlinear Physics, from Vibration Control to Rogue Waves and Beyond

Author: Attilio Maccari
language: en
Publisher: Cambridge Scholars Publishing
Release Date: 2023-02-13
This textbook is devoted to nonlinear physics, using the asymptotic perturbation method as a mathematical tool. The theory is developed systematically, starting with nonlinear oscillators, limit cycles and their bifurcations, followed by iterated nonlinear maps, continuous systems, nonlinear partial differential equations (NPDEs) and culminating with infinite-period bifurcation in the nonlinear Schrodinger equation and fractal and chaotic solutions in NPDEs. A remarkable feature of the book is its emphasis on applications. It offers several examples, and the scientific background is explained at an elementary level and closely integrated with the mathematical theory. In addition, it is ideal for an introductory course at the senior or first-year graduate level.
Asymptotic Perturbation Methods

Asymptotic Perturbation Methods Cohesive overview of powerful mathematical methods to solve differential equations in physics Asymptotic Perturbation Methods for Nonlinear Differential Equations in Physics addresses nonlinearity in various fields of physics from the vantage point of its mathematical description in the form of nonlinear partial differential equations and presents a unified view on nonlinear systems in physics by providing a common framework to obtain approximate solutions to the respective nonlinear partial differential equations based on the asymptotic perturbation method. Aside from its complete coverage of a complicated topic, a noteworthy feature of the book is the emphasis on applications. There are several examples included throughout the text, and, crucially, the scientific background is explained at an elementary level and closely integrated with the mathematical theory to enable seamless reader comprehension. To fully understand the concepts within this book, the prerequisites are multivariable calculus and introductory physics. Written by a highly qualified author with significant accomplishments in the field, Asymptotic Perturbation Methods for Nonlinear Differential Equations in Physics covers sample topics such as: Application of the various flavors of the asymptotic perturbation method, such as the Maccari method to the governing equations of nonlinear system Nonlinear oscillators, limit cycles, and their bifurcations, iterated nonlinear maps, continuous systems, and nonlinear partial differential equations (NPDEs) Nonlinear systems, such as the van der Pol oscillator, with advanced coverage of plasma physics, quantum mechanics, elementary particle physics, cosmology, and chaotic systems Infinite-period bifurcation in the nonlinear Schrodinger equation and fractal and chaotic solutions in NPDEs Asymptotic Perturbation Methods for Nonlinear Differential Equations in Physics is ideal for an introductory course at the senior or first year graduate level. It is also a highly valuable reference for any professional scientist who does not possess deep knowledge about nonlinear physics.
New Approaches to Nonlinear Waves

The book details a few of the novel methods developed in the last few years for studying various aspects of nonlinear wave systems. The introductory chapter provides a general overview, thematically linking the objects described in the book. Two chapters are devoted to wave systems possessing resonances with linear frequencies (Chapter 2) and with nonlinear frequencies (Chapter 3). In the next two chapters modulation instability in the KdV-type of equations is studied using rigorous mathematical methods (Chapter 4) and its possible connection to freak waves is investigated (Chapter 5). The book goes on to demonstrate how the choice of the Hamiltonian (Chapter 6) or the Lagrangian (Chapter 7) framework allows us to gain a deeper insight into the properties of a specific wave system. The final chapter discusses problems encountered when attempting to verify the theoretical predictions using numerical or laboratory experiments. All the chapters are illustrated by ample constructive examples demonstrating the applicability of these novel methods and approaches to a wide class of evolutionary dispersive PDEs, e.g. equations from Benjamin-Oro, Boussinesq, Hasegawa-Mima, KdV-type, Klein-Gordon, NLS-type, Serre, Shamel , Whitham and Zakharov. This makes the book interesting for professionals in the fields of nonlinear physics, applied mathematics and fluid mechanics as well as students who are studying these subjects. The book can also be used as a basis for a one-semester lecture course in applied mathematics or mathematical physics.