Nonlinear Optical Materials Principles And Applications

Download Nonlinear Optical Materials Principles And Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Nonlinear Optical Materials Principles And Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Nonlinear Optical Materials: Principles and Applications

Nonlinear optical materials play a pivotal role in the future evolution of nonlinear optics in general and its impact in technology and industrial applications in particular. The progress in nonlinear optics has been tremendous since the first demonstration of an all-optical nonlinear effect in the early sixties, but until recently the main visible emphasis was on the physical aspects of the nonlinear radiation matter interaction. In the last decade, however, this effort has also brought its fruits in applied aspects of nonlinear optics. This can be essentially traced to the improvement of the performances of the nonlinear optical materials. Our understanding of the nonlinear polarization mechanisms and their relation to the structural characteristics of the materials has been considerably improved. In addition, the new development of techniques for the fabrication and growth of artificial materials has dramatically contributed to this evolution. The goal is to find and develop materials presenting large nonlinearities and satisfying at the same time all the technological requirements for applications such as wide transparency range, fast response, high damage threshold but also processability, adaptability and interfacing with other materials. Improvements, besides rendering possible the implementation of nonlinear effects in devices, open the way to the study of new nonlinear optical effects and the introduction of new concepts. This book describes new concepts which are emerging in the field of nonlinear optical materials, concentrating the attention on materials which seem more promising for applications in the technology of information transmission and processing.
Principles and Applications of Nonlinear Optical Materials

Author: R.W. Munn
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
Nonlinear optics is a topic of much current interest that exhibits a great diversity. Some publications on the subject are clearly physics, while others reveal an engineering bias; some appear to be accessible to the chemist, while others may appeal to biological understanding. Yet all purport to be non linear optics so where is the underlying unity? The answer is that the unity lies in the phenomena and the devices that exploit them, while the diversity lies in the materials used to express the phenomena. This book is an attempt to show this unity in diversity by bringing together contributions covering an unusually wide range of materials, preceded by accounts of the main phenomena and important devices. Because ofthe diversity, individual materials are treated in separate chapters by different expert authors, while as editors we have shouldered the task of providing the unifying initial chapters. Most main classes of nonlinear optical solids are treated: semiconductors, glasses, ferroelectrics, molecular crystals, polymers, and Langmuir-Blodgett films. (However, liquid crystals are not covered. ) Each class of material is enough for a monograph in itself, and this book is designed to be an introduction suitable for graduate students and those in industry entering the area of nonlinear optics. It is also suitable in parts for final-year undergraduates on project work. It aims to provide a bridge between traditional fields of expertise and the broader field of nonlinear optics.
Principles and Applications of Nonlinear Optical Materials

Nonlinear optics is a topic of much current interest that exhibits a great diversity. Some publications on the subject are clearly physics, while others reveal an engineering bias; some appear to be accessible to the chemist, while others may appeal to biological understanding. Yet all purport to be non linear optics so where is the underlying unity? The answer is that the unity lies in the phenomena and the devices that exploit them, while the diversity lies in the materials used to express the phenomena. This book is an attempt to show this unity in diversity by bringing together contributions covering an unusually wide range of materials, preceded by accounts of the main phenomena and important devices. Because ofthe diversity, individual materials are treated in separate chapters by different expert authors, while as editors we have shouldered the task of providing the unifying initial chapters. Most main classes of nonlinear optical solids are treated: semiconductors, glasses, ferroelectrics, molecular crystals, polymers, and Langmuir-Blodgett films. (However, liquid crystals are not covered. ) Each class of material is enough for a monograph in itself, and this book is designed to be an introduction suitable for graduate students and those in industry entering the area of nonlinear optics. It is also suitable in parts for final-year undergraduates on project work. It aims to provide a bridge between traditional fields of expertise and the broader field of nonlinear optics.