Nonlinear Lp Norm Estimation

Download Nonlinear Lp Norm Estimation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Nonlinear Lp Norm Estimation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Nonlinear Lp-Norm Estimation

Complete with valuable FORTRAN programs that help solve nondifferentiable nonlinear LtandLo.-norm estimation problems, this important reference/text extensively delineates ahistory of Lp-norm estimation. It examines the nonlinear Lp-norm estimation problem that isa viable alternative to least squares estimation problems where the underlying errordistribution is nonnormal, i.e., non-Gaussian.Nonlinear LrNorm Estimation addresses both computational and statistical aspects ofLp-norm estimation problems to bridge the gap between these two fields . . . contains 70useful illustrations ... discusses linear Lp-norm as well as nonlinear Lt, Lo., and Lp-normestimation problems . . . provides all appropriate computational algorithms and FORTRANlistings for nonlinear Lt- and Lo.-norm estimation problems . . . guides readers with clear endof-chapter notes on related topics and outstanding research publications . . . contains numericalexamples plus several practical problems .. . and shows how the data can prescribe variousapplications of Lp-norm alternatives.Nonlinear Lp-Norm Estimation is an indispensable reference for statisticians,operations researchers, numerical analysts, applied mathematicians, biometricians, andcomputer scientists, as well as a text for graduate students in statistics or computer science.
Nonlinear Lp-Norm Estimation

Complete with valuable FORTRAN programs that help solve nondifferentiable nonlinear LtandLo.-norm estimation problems, this important reference/text extensively delineates ahistory of Lp-norm estimation. It examines the nonlinear Lp-norm estimation problem that isa viable alternative to least squares estimation problems where the underlying errordistribution is nonnormal, i.e., non-Gaussian.Nonlinear LrNorm Estimation addresses both computational and statistical aspects ofLp-norm estimation problems to bridge the gap between these two fields . . . contains 70useful illustrations ... discusses linear Lp-norm as well as nonlinear Lt, Lo., and Lp-normestimation problems . . . provides all appropriate computational algorithms and FORTRANlistings for nonlinear Lt- and Lo.-norm estimation problems . . . guides readers with clear endof-chapter notes on related topics and outstanding research publications . . . contains numericalexamples plus several practical problems .. . and shows how the data can prescribe variousapplications of Lp-norm alternatives.Nonlinear Lp-Norm Estimation is an indispensable reference for statisticians,operations researchers, numerical analysts, applied mathematicians, biometricians, andcomputer scientists, as well as a text for graduate students in statistics or computer science.
Smoothing and Decay Estimates for Nonlinear Diffusion Equations

This text is concerned with the quantitative aspects of the theory of nonlinear diffusion equations; equations which can be seen as nonlinear variations of the classical heat equation. They appear as mathematical models in different branches of Physics, Chemistry, Biology, and Engineering, and are also relevant in differential geometry and relativistic physics. Much of the modern theory of such equations is based on estimates and functional analysis. Concentrating on a class of equations with nonlinearities of power type that lead to degenerate or singular parabolicity ("equations of porous medium type"), the aim of this text is to obtain sharp a priori estimates and decay rates for general classes of solutions in terms of estimates of particular problems. These estimates are the building blocks in understanding the qualitative theory, and the decay rates pave the way to the fine study of asymptotics. Many technically relevant questions are presented and analyzed in detail. A systematic picture of the most relevant phenomena is obtained for the equations under study, including time decay, smoothing, extinction in finite time, and delayed regularity.