Nonlinear Kinetic Theory And Mathematical Aspects Of Hyperbolic Systems


Download Nonlinear Kinetic Theory And Mathematical Aspects Of Hyperbolic Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Nonlinear Kinetic Theory And Mathematical Aspects Of Hyperbolic Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Nonlinear Kinetic Theory And Mathematical Aspects Of Hyperbolic Systems


Nonlinear Kinetic Theory And Mathematical Aspects Of Hyperbolic Systems

Author: Vinicio C Boffi

language: en

Publisher: World Scientific

Release Date: 1992-10-28


DOWNLOAD





Contents: Mathematical Biology and Kinetic Theory Evolution of the Dominance in a Population of Interacting Organisms (N Bellomo & M Lachowicz)Formation of Maxwellian Tails (A V Bobylev)On Long Time Asymptotics of the Vlasov-Poisson-Boltzmann System (J Dolbeault)The Classical Limit of a Self-Consistent Quantum-Vlasov Equation in 3-D (P A Markowich & N J Mauser)Simple Balance Methods for Transport in Stochastic Mixtures (G C Pomraning)Knudsen Layer Analysis by the Semicontinuous Boltzmann Equation (L Preziosi)Remarks on a Self Similar Fluid Dynamic Limit for the Broadwell System (M Slemrod & A E Tzavaras)On Extended Kinetic Theory with Chemical Reaction (C Spiga)Stability and Exponential Convergence in Lp for the Spatially Homogeneous Boltzmann Equation (B Wennberg)and other papers Readership: Applied mathematicians. keywords:Proceedings;Workshop;Rapallo (Italy);Kinetic Theory;Hyperbolic Systems;Nonlinear Kinetic Theory

Lecture Notes on the Discretization of the Boltzmann Equation


Lecture Notes on the Discretization of the Boltzmann Equation

Author: N. Bellomo

language: en

Publisher: World Scientific

Release Date: 2003


DOWNLOAD





This book presents contributions on the following topics: discretization methods in the velocity and space, analysis of the conservation properties, asymptotic convergence to the continuous equation when the number of velocities tends to infinity, and application of discrete models. It consists of ten chapters. Each chapter is written by applied mathematicians who have been active in the field, and whose scientific contributions are well recognized by the scientific community.

Applications Of Pade' Approximation Theory In Fluid Dynamics


Applications Of Pade' Approximation Theory In Fluid Dynamics

Author: Amilcare Pozzi

language: en

Publisher: World Scientific

Release Date: 1994-03-07


DOWNLOAD





Although Padé presented his fundamental paper at the end of the last century, the studies on Padé's approximants only became significant in the second part of this century.Padé procedure is related to the theory of continued fractions, and some convergence theorems can be expressed only in terms of continued fractions. Further, Padé approximants have some advantages of practical applicability with respect to the continued-fraction theory. Moreover, as Chisholm notes, a given power series determines a set of approximants which are usually unique, whereas there are many ways of writing an associated continued fraction.The principal advantage of Padé approximants with respect to the generating Taylor series is that they provide an extension beyond the interval of convergence of the series.Padé approximants can be applied in many parts of fluid-dynamics, both in steady and in nonsteady flows, both in incompressible and in compressible regimes.This book is divided into four parts. The first one deals with the properties of the Padé approximants that are useful for the applications and illustrates, with the aid of diagrams and tables, the effectiveness of this technique in the field of applied mathematics. The second part recalls the basic equations of fluid-dynamics (those associated with the names of Navier-Stokes, Euler and Prandtl) and gives a quick derivation of them from the general balance equation. The third shows eight examples of the application of Padé approximants to steady flows, also taking into account the influence of the coupling of heat conduction in the body along which a fluid flows with conduction and convection in the fluid itself. The fourth part considers two examples of the application of Padé approximants to unsteady flows.