Nonlinear Elliptic And Parabolic Equations Of The Second Order


Download Nonlinear Elliptic And Parabolic Equations Of The Second Order PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Nonlinear Elliptic And Parabolic Equations Of The Second Order book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Nonlinear Elliptic and Parabolic Equations of the Second Order


Nonlinear Elliptic and Parabolic Equations of the Second Order

Author: N.V. Krylov

language: en

Publisher: Springer

Release Date: 2001-12-14


DOWNLOAD





Approach your problems from the It isn't that they can't see the right end and begin with the solution. It is that they can't see answers. Then one day, perhaps the problem. you will find the final question. G.K. Chesterton. The Scandal of 'The Hermit Clad in Crane Father Brown 'The Point of a Pin'. Feathers' in R. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of mono graphs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theor.etical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces.

Singular Solutions of Nonlinear Elliptic and Parabolic Equations


Singular Solutions of Nonlinear Elliptic and Parabolic Equations

Author: Alexander A. Kovalevsky

language: en

Publisher: Walter de Gruyter GmbH & Co KG

Release Date: 2016-03-21


DOWNLOAD





This monograph looks at several trends in the investigation of singular solutions of nonlinear elliptic and parabolic equations. It discusses results on the existence and properties of weak and entropy solutions for elliptic second-order equations and some classes of fourth-order equations with L1-data and questions on the removability of singularities of solutions to elliptic and parabolic second-order equations in divergence form. It looks at localized and nonlocalized singularly peaking boundary regimes for different classes of quasilinear parabolic second- and high-order equations in divergence form. The book will be useful for researchers and post-graduate students that specialize in the field of the theory of partial differential equations and nonlinear analysis. Contents: Foreword Part I: Nonlinear elliptic equations with L^1-data Nonlinear elliptic equations of the second order with L^1-data Nonlinear equations of the fourth order with strengthened coercivity and L^1-data Part II: Removability of singularities of the solutions of quasilinear elliptic and parabolic equations of the second order Removability of singularities of the solutions of quasilinear elliptic equations Removability of singularities of the solutions of quasilinear parabolic equations Quasilinear elliptic equations with coefficients from the Kato class Part III: Boundary regimes with peaking for quasilinear parabolic equations Energy methods for the investigation of localized regimes with peaking for parabolic second-order equations Method of functional inequalities in peaking regimes for parabolic equations of higher orders Nonlocalized regimes with singular peaking Appendix: Formulations and proofs of the auxiliary results Bibliography

Sobolev and Viscosity Solutions for Fully Nonlinear Elliptic and Parabolic Equations


Sobolev and Viscosity Solutions for Fully Nonlinear Elliptic and Parabolic Equations

Author: N. V. Krylov

language: en

Publisher: American Mathematical Soc.

Release Date: 2018-09-07


DOWNLOAD





This book concentrates on first boundary-value problems for fully nonlinear second-order uniformly elliptic and parabolic equations with discontinuous coefficients. We look for solutions in Sobolev classes, local or global, or for viscosity solutions. Most of the auxiliary results, such as Aleksandrov's elliptic and parabolic estimates, the Krylov–Safonov and the Evans–Krylov theorems, are taken from old sources, and the main results were obtained in the last few years. Presentation of these results is based on a generalization of the Fefferman–Stein theorem, on Fang-Hua Lin's like estimates, and on the so-called “ersatz” existence theorems, saying that one can slightly modify “any” equation and get a “cut-off” equation that has solutions with bounded derivatives. These theorems allow us to prove the solvability in Sobolev classes for equations that are quite far from the ones which are convex or concave with respect to the Hessians of the unknown functions. In studying viscosity solutions, these theorems also allow us to deal with classical approximating solutions, thus avoiding sometimes heavy constructions from the usual theory of viscosity solutions.