Non Standard Parametric Statistical Inference


Download Non Standard Parametric Statistical Inference PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Non Standard Parametric Statistical Inference book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Non-Standard Parametric Statistical Inference


Non-Standard Parametric Statistical Inference

Author: Russell Cheng

language: en

Publisher: Oxford University Press

Release Date: 2017-09-15


DOWNLOAD





This book discusses the fitting of parametric statistical models to data samples. Emphasis is placed on: (i) how to recognize situations where the problem is non-standard when parameter estimates behave unusually, and (ii) the use of parametric bootstrap resampling methods in analyzing such problems. A frequentist likelihood-based viewpoint is adopted, for which there is a well-established and very practical theory. The standard situation is where certain widely applicable regularity conditions hold. However, there are many apparently innocuous situations where standard theory breaks down, sometimes spectacularly. Most of the departures from regularity are described geometrically, with only sufficient mathematical detail to clarify the non-standard nature of a problem and to allow formulation of practical solutions. The book is intended for anyone with a basic knowledge of statistical methods, as is typically covered in a university statistical inference course, wishing to understand or study how standard methodology might fail. Easy to understand statistical methods are presented which overcome these difficulties, and demonstrated by detailed examples drawn from real applications. Simple and practical model-building is an underlying theme. Parametric bootstrap resampling is used throughout for analyzing the properties of fitted models, illustrating its ease of implementation even in non-standard situations. Distributional properties are obtained numerically for estimators or statistics not previously considered in the literature because their theoretical distributional properties are too hard to obtain theoretically. Bootstrap results are presented mainly graphically in the book, providing an accessible demonstration of the sampling behaviour of estimators.

Non-standard Parametric Statistical Inference


Non-standard Parametric Statistical Inference

Author: Russell Cheng

language: en

Publisher:

Release Date: 2017


DOWNLOAD





This book discusses the fitting of parametric statistical models to data samples. Emphasis is placed on (i) how to recognize situations where the problem is non-standard, when parameter estimates behave unusually, and (ii) the use of parametric bootstrap resampling methods in analysing such problems. Simple and practical model building is an underlying theme. A frequentist viewpoint based on likelihood is adopted, for which there is a well-established and very practical theory. The standard situation is where certain widely applicable regularity conditions hold. However, there are many apparently innocuous situations where standard theory breaks down, sometimes spectacularly. Most of the departures from regularity are described geometrically in the book, with mathematical detail only sufficient to clarify the non-standard nature of a problem and to allow formulation of practical solutions. The book is intended for anyone with a basic knowledge of statistical methods typically covered in a university statistical inference course who wishes to understand or study how standard methodology might fail.

PROBABILITY AND STATISTICS - Volume II


PROBABILITY AND STATISTICS - Volume II

Author: Reinhard Viertl

language: en

Publisher: EOLSS Publications

Release Date: 2009-06-11


DOWNLOAD





Probability and Statistics theme is a component of Encyclopedia of Mathematical Sciences in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. The Theme with contributions from distinguished experts in the field, discusses Probability and Statistics. Probability is a standard mathematical concept to describe stochastic uncertainty. Probability and Statistics can be considered as the two sides of a coin. They consist of methods for modeling uncertainty and measuring real phenomena. Today many important political, health, and economic decisions are based on statistics. This theme is structured in five main topics: Probability and Statistics; Probability Theory; Stochastic Processes and Random Fields; Probabilistic Models and Methods; Foundations of Statistics, which are then expanded into multiple subtopics, each as a chapter. These three volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs.