Non Euclidean Geometry And Curvature


Download Non Euclidean Geometry And Curvature PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Non Euclidean Geometry And Curvature book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Non-Euclidean Geometry and Curvature


Non-Euclidean Geometry and Curvature

Author: James W. Cannon

language: en

Publisher: American Mathematical Soc.

Release Date: 2017-11-08


DOWNLOAD





This is the final volume of a three volume collection devoted to the geometry, topology, and curvature of 2-dimensional spaces. The collection provides a guided tour through a wide range of topics by one of the twentieth century's masters of geometric topology. The books are accessible to college and graduate students and provide perspective and insight to mathematicians at all levels who are interested in geometry and topology. Einstein showed how to interpret gravity as the dynamic response to the curvature of space-time. Bill Thurston showed us that non-Euclidean geometries and curvature are essential to the understanding of low-dimensional spaces. This third and final volume aims to give the reader a firm intuitive understanding of these concepts in dimension 2. The volume first demonstrates a number of the most important properties of non-Euclidean geometry by means of simple infinite graphs that approximate that geometry. This is followed by a long chapter taken from lectures the author gave at MSRI, which explains a more classical view of hyperbolic non-Euclidean geometry in all dimensions. Finally, the author explains a natural intrinsic obstruction to flattening a triangulated polyhedral surface into the plane without distorting the constituent triangles. That obstruction extends intrinsically to smooth surfaces by approximation and is called curvature. Gauss's original definition of curvature is extrinsic rather than intrinsic. The final two chapters show that the book's intrinsic definition is equivalent to Gauss's extrinsic definition (Gauss's “Theorema Egregium” (“Great Theorem”)).

Non-Euclidean Geometry and Curvature


Non-Euclidean Geometry and Curvature

Author: James W. Cannon

language: en

Publisher:

Release Date: 2017


DOWNLOAD





This is the final volume of a three volume collection devoted to the geometry, topology, and curvature of 2-dimensional spaces. The collection provides a guided tour through a wide range of topics by one of the twentieth century's masters of geometric topology. The books are accessible to college and graduate students and provide perspective and insight to mathematicians at all levels who are interested in geometry and topology. Einstein showed how to interpret gravity as the dynamic response to the curvature of space-time. Bill Thurston showed us that non-Euclidean geometries and curvature are essential to the understanding of low-dimensional spaces. This third and final volume aims to give the reader a firm intuitive understanding of these concepts in dimension 2. The volume first demonstrates a number of the most important properties of non-Euclidean geometry by means of simple infinite graphs that approximate that geometry. This is followed by a long chapter taken from lectures the author gave at MSRI, which explains a more classical view of hyperbolic non-Euclidean geometry in all dimensions. Finally, the author explains a natural intrinsic obstruction to flattening a triangulated polyhedral surface into the plane without distorting the constituent triangles. That obstruction extends intrinsically to smooth surfaces by approximation and is called curvature. Gauss's original definition of curvature is extrinsic rather than intrinsic. The final two chapters show that the book's intrinsic definition is equivalent to Gauss's extrinsic definition (Gauss's "Theorema Egregium" ("Great Theorem"))

Geometry with an Introduction to Cosmic Topology


Geometry with an Introduction to Cosmic Topology

Author: Michael P. Hitchman

language: en

Publisher: Jones & Bartlett Learning

Release Date: 2009


DOWNLOAD





The content of Geometry with an Introduction to Cosmic Topology is motivated by questions that have ignited the imagination of stargazers since antiquity. What is the shape of the universe? Does the universe have and edge? Is it infinitely big? Dr. Hitchman aims to clarify this fascinating area of mathematics. This non-Euclidean geometry text is organized intothree natural parts. Chapter 1 provides an overview including a brief history of Geometry, Surfaces, and reasons to study Non-Euclidean Geometry. Chapters 2-7 contain the core mathematical content of the text, following the ErlangenProgram, which develops geometry in terms of a space and a group of transformations on that space. Finally chapters 1 and 8 introduce (chapter 1) and explore (chapter 8) the topic of cosmic topology through the geometry learned in the preceding chapters.