Non Equilibrium Dynamics Of Driven Low Dimensional Quantum Systems

Download Non Equilibrium Dynamics Of Driven Low Dimensional Quantum Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Non Equilibrium Dynamics Of Driven Low Dimensional Quantum Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Non-equilibrium Dynamics of Driven Low-dimensional Quantum Systems

This thesis analyzes some aspects regarding the dynamics of one-dimensional quantum systems which are driven out-of-equilibrium by the presence of time- dependent external fields. Among the possible kinds of driven systems, our focus is dedicated to the slow variation of a Hamiltonian's parameter across a quantum phase transition and to the case of a time-periodic forcing. To begin with, we prepare the background and the tools needed in the following. This includes a brief introduction to quantum critical models (in particular to the xy spin chain and to the Bose-Hubbard model), the Kibble-Zurek mechanism and Floquet theory. Next, we consider the non-equilibrium dynamics of Tonks-Girardeau gases in time-dependent harmonic trap potentials. The analysis is made with different techniques: perturbative expansions, numerical exact diagonalization and exact methods based on the theory of Ermakov-Lewis dynamical invariants. The last part of the thesis deals instead with the non-equilibrium dynamics of markovian open quantum systems subject to time-periodic perturbations of the system parameters and of the environment. This has led to an exact formulation of Floquet theory for a Lindblad dynamics. Moreover, within the Lindblad-Floquet framework it is possible to have an exact characterization ofthe finite-time operation of quantum heat-engines.
Non-Equilibrium Dynamics Beyond Dephasing

Cold atomic gases trapped and manipulated on atom chips allow the realization of seminal one-dimensional (1d) quantum many-body problems in an isolated and well controlled environment. In this context, this thesis presents an extensive experimental study of non-equilibrium dynamics in 1d Bose gases, with a focus on processes that go beyond simple dephasing dynamics. It reports on the observation of recurrences of coherence in the post-quench dynamics of a pair of 1d Bose gases and presents a detailed study of their decay. The latter represents the first observation of phonon-phonon scattering in these systems. Furthermore, the thesis investigates a novel cooling mechanism occurring in Bose gases subjected to a uniform loss of particles. Together, the results presented show a wide range of non-equilibrium phenomena occurring in 1d Bose gases and establish them as an ideal testbed for many-body physics beyond equilibrium.
Dynamics of Dissipation

Author: Piotr Garbaczewski
language: en
Publisher: Springer Science & Business Media
Release Date: 2007-08-04
This collection of lectures treats the dynamics of open systems with a strong emphasis on dissipation phenomena related to dynamical chaos. This research area is very broad, covering topics such as nonequilibrium statistical mechanics, environment-system coupling (decoherence) and applications of Markov semi-groups to name but a few. The book addresses not only experienced researchers in the field but also nonspecialists from related areas of research, postgraduate students wishing to enter the field and lecturers searching for advanced textbook material.