Noise In Nonlinear Dynamical Systems Volume 2 Theory Of Noise Induced Processes In Special Applications

Download Noise In Nonlinear Dynamical Systems Volume 2 Theory Of Noise Induced Processes In Special Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Noise In Nonlinear Dynamical Systems Volume 2 Theory Of Noise Induced Processes In Special Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Noise in Nonlinear Dynamical Systems: Volume 2, Theory of Noise Induced Processes in Special Applications

Author: Frank Moss
language: en
Publisher: Cambridge University Press
Release Date: 2009-08-20
Nature is inherently noisy and nonlinear. It is noisy in the sense that all macroscopic systems are subject to the fluctuations of their environments and also to internal fluctuations. It is nonlinear in the sense that the restoring force on a system displaced from equilibrium does not usually vary linearly with the size of the displacement. To calculate the properties of stochastic (noisy) nonlinear systems is in general extremely difficult, although considerable progress has been made in the past. The three volumes that make up Noise in Nonlinear Dynamical Systems comprise a collection of specially written authoritative reviews on all aspects of the subject, representative of all the major practitioners in the field. The second volume applies the theory of Volume 1 to the calculation of the influence of noise in a variety of contexts. These include quantum mechanics, condensed matter, noise induced transitions, escape processes and transition probabilities, systems with periodic potentials, discrete nonlinear systems, symmetry-breaking transition, and optics.
IUTAM Symposium on New Applications of Nonlinear and Chaotic Dynamics in Mechanics

Author: Francis C. Moon
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
It is two decades since Mitchell Feigenbaum's landmark papers on period doubling and the modern beginnings of what is now called "Chaos Theory". From the very beginning, mechanics has been a central focus for modem nonlinear dynamical systems. Fluid, structural, machine and rigid body dynamics has been a fertile field for nonlinear phenomena and chaos in particular. Early experimental evidence for chaotic phenomena in mechanics gave the new chaos theory a mark of credibility, importance, and relevance that its earlier sister field, catastrophe theory, did not achieve. The fact that mechanics straddles both physics and engineering also meant that mechanics became a pathway for direct application of chaos theory to applied problems. So what is new in nonlinear dynamics and mechanics today? First the scope of applications in solid mechanics has broadened to cover material processing, inelasticity and fracture mechanics. In rigid body dynamics, more complex systems such as vehicles, robotics and controlled machines have come into the purview of nonlinear dynamicists. On the mathematics side of nonlinear dynamics, it is now recognized that spatio-temporal problems, hysteretic and time delay problems are the new frontiers in this field. Also the term "complexity" has been added to the lexicon of chaos theory to describe the dynamics of many interacting sub systems which can exhibit self organization and evolution. Complexity analysis has gained a foothold in biological and some social sciences as well in fluid and chemical physics.
Nonlinear Dynamics of Chaotic and Stochastic Systems

Author: Vadim S. Anishchenko
language: en
Publisher: Springer Science & Business Media
Release Date: 2007-07-20
We present an improved and enlarged version of our book Nonlinear - namics of Chaotic and Stochastic Systems published by Springer in 2002. Basically, the new edition of the book corresponds to its ?rst version. While preparingthiseditionwemadesomeclari?cationsinseveralsectionsandalso corrected the misprints noticed in some formulas. Besides, three new sections have been added to Chapter 2. They are “Statistical Properties of Dynamical Chaos,” “E?ects of Synchronization in Extended Self-Sustained Oscillatory Systems,” and “Synchronization in Living Systems.” The sections indicated re?ect the most interesting results obtained by the authors after publication of the ?rst edition. We hope that the new edition of the book will be of great interest for a widesectionofreaderswhoarealreadyspecialistsorthosewhoarebeginning research in the ?elds of nonlinear oscillation and wave theory, dynamical chaos, synchronization, and stochastic process theory. Saratov, Berlin, and St. Louis V.S. Anishchenko November 2006 A.B. Neiman T.E. Vadiavasova V.V. Astakhov L. Schimansky-Geier Preface to the First Edition Thisbookisdevotedtotheclassicalbackgroundandtocontemporaryresults on nonlinear dynamics of deterministic and stochastic systems. Considerable attentionisgiventothee?ectsofnoiseonvariousregimesofdynamicsystems with noise-induced order. On the one hand, there exists a rich literature of excellent books on n- linear dynamics and chaos; on the other hand, there are many marvelous monographs and textbooks on the statistical physics of far-from-equilibrium andstochasticprocesses.Thisbookisanattempttocombinetheapproachof nonlinear dynamics based on the deterministic evolution equations with the approach of statistical physics based on stochastic or kineticequations. One of our main aims is to show the important role of noise in the organization and properties of dynamic regimes of nonlinear dissipative systems.