Nmr Quantum Information Processing


Download Nmr Quantum Information Processing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Nmr Quantum Information Processing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

NMR Quantum Information Processing


NMR Quantum Information Processing

Author: Ivan Oliveira

language: en

Publisher: Elsevier

Release Date: 2011-04-18


DOWNLOAD





Quantum Computation and Quantum Information (QIP) deals with the identification and use of quantum resources for information processing. This includes three main branches of investigation: quantum algorithm design, quantum simulation andquantum communication, including quantum cryptography. Along the past few years, QIP has become one of the most active area ofresearch in both, theoretical and experimental physics, attracting students and researchers fascinated, not only by the potentialpractical applications of quantum computers, but also by the possibility of studying fundamental physics at the deepest level of quantum phenomena.NMR Quantum Computation and Quantum Information Processing describes the fundamentals of NMR QIP, and the main developments which can lead to a large-scale quantum processor. The text starts with a general chapter onthe interesting topic of the physics of computation. The very first ideas which sparkled the development of QIP came from basic considerations of the physical processes underlying computational actions. In Chapter 2 it is made an introduction to NMR, including the hardware and other experimental aspects of the technique. InChapter 3 we revise the fundamentals of Quantum Computation and Quantum Information. The chapter is very much based on the extraordinary book of Michael A. Nielsen and Isaac L. Chuang, withan upgrade containing some of the latest developments, such as QIP in phase space, and telecloning. Chapter 4 describes how NMRgenerates quantum logic gates from radiofrequency pulses, upon which quantum protocols are built. It also describes the important technique of Quantum State Tomography for both, quadrupole and spin1/2 nuclei. Chapter 5 describes some of the main experiments of quantum algorithm implementation by NMR, quantum simulation and QIP in phase space. The important issue of entanglement in NMR QIPexperiments is discussed in Chapter 6. This has been a particularly exciting topic in the literature. The chapter contains a discussionon the theoretical aspects of NMR entanglement, as well as some of the main experiments where this phenomenon is reported. Finally, Chapter 7 is an attempt to address the future of NMR QIP, based invery recent developments in nanofabrication and single-spin detection experiments. Each chapter is followed by a number of problems and solutions.* Presents a large number of problems with solutions, ideal for students* Brings together topics in different areas: NMR, nanotechnology, quantum computation * Extensive references

Quantum Entanglement and Information Processing


Quantum Entanglement and Information Processing

Author: Daniel Esteve

language: en

Publisher: Elsevier

Release Date: 2004-12-13


DOWNLOAD





Presents the lecture notes of the Les Houches Summer School on Quantum entanglement and information processing. This book aims to establish connections between the communities of quantum optics and of quantum electronic devices working in the area of quantum computing. It is useful for graduate students with a basic knowledge of quantum mechanics.

Quantum Information Processing


Quantum Information Processing

Author: D.G. Angelakis

language: en

Publisher: IOS Press

Release Date: 2006-06-27


DOWNLOAD





The Antikythera mechanism was probably the world’s first ‘analog computer’ — a sophisticated device for calculating the motions of stars and planets. This remarkable assembly of more than 30 gears with a differential mechanism, made on Rhodes or Cos in the first century B.C., revised the view of what the ancient Greeks were capable of creating at that time. A comparable level of engineering didn’t become widespread until the industrial revolution nearly two millennia later. This collection of papers provides a good overview of the current state-of-the-art of quantum information science. We do not know how a quantum Antikythera will look like but all we know is that the best way to predict the future is to create it. From the perspective of the future, it may well be that the real computer age has not yet even begun.