Next Generation Data Technologies For Collective Computational Intelligence

Download Next Generation Data Technologies For Collective Computational Intelligence PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Next Generation Data Technologies For Collective Computational Intelligence book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Next Generation Data Technologies for Collective Computational Intelligence

Author: Nik Bessis
language: en
Publisher: Springer Science & Business Media
Release Date: 2011-04-28
This book focuses on next generation data technologies in support of collective and computational intelligence. The book brings various next generation data technologies together to capture, integrate, analyze, mine, annotate and visualize distributed data – made available from various community users – in a meaningful and collaborative for the organization manner. A unique perspective on collective computational intelligence is offered by embracing both theory and strategies fundamentals such as data clustering, graph partitioning, collaborative decision making, self-adaptive ant colony, swarm and evolutionary agents. It also covers emerging and next generation technologies in support of collective computational intelligence such as Web 2.0 social networks, semantic web for data annotation, knowledge representation and inference, data privacy and security, and enabling distributed and collaborative paradigms such as P2P, Grid and Cloud Computing due to the geographically dispersed and distributed nature of the data. The book aims to cover in a comprehensive manner the combinatorial effort of utilizing and integrating various next generations collaborative and distributed data technologies for computational intelligence in various scenarios. The book also distinguishes itself by assessing whether utilization and integration of next generation data technologies can assist in the identification of new opportunities, which may also be strategically fit for purpose.
Combinatorial Machine Learning

Decision trees and decision rule systems are widely used in different applications as algorithms for problem solving, as predictors, and as a way for knowledge representation. Reducts play key role in the problem of attribute (feature) selection. The aims of this book are (i) the consideration of the sets of decision trees, rules and reducts; (ii) study of relationships among these objects; (iii) design of algorithms for construction of trees, rules and reducts; and (iv) obtaining bounds on their complexity. Applications for supervised machine learning, discrete optimization, analysis of acyclic programs, fault diagnosis, and pattern recognition are considered also. This is a mixture of research monograph and lecture notes. It contains many unpublished results. However, proofs are carefully selected to be understandable for students. The results considered in this book can be useful for researchers in machine learning, data mining and knowledge discovery, especially for those who are working in rough set theory, test theory and logical analysis of data. The book can be used in the creation of courses for graduate students.
Complex-Valued Neural Networks with Multi-Valued Neurons

Complex-Valued Neural Networks have higher functionality, learn faster and generalize better than their real-valued counterparts. This book is devoted to the Multi-Valued Neuron (MVN) and MVN-based neural networks. It contains a comprehensive observation of MVN theory, its learning, and applications. MVN is a complex-valued neuron whose inputs and output are located on the unit circle. Its activation function is a function only of argument (phase) of the weighted sum. MVN derivative-free learning is based on the error-correction rule. A single MVN can learn those input/output mappings that are non-linearly separable in the real domain. Such classical non-linearly separable problems as XOR and Parity n are the simplest that can be learned by a single MVN. Another important advantage of MVN is a proper treatment of the phase information. These properties of MVN become even more remarkable when this neuron is used as a basic one in neural networks. The Multilayer Neural Network based on Multi-Valued Neurons (MLMVN) is an MVN-based feedforward neural network. Its backpropagation learning algorithm is derivative-free and based on the error-correction rule. It does not suffer from the local minima phenomenon. MLMVN outperforms many other machine learning techniques in terms of learning speed, network complexity and generalization capability when solving both benchmark and real-world classification and prediction problems. Another interesting application of MVN is its use as a basic neuron in multi-state associative memories. The book is addressed to those readers who develop theoretical fundamentals of neural networks and use neural networks for solving various real-world problems. It should also be very suitable for Ph.D. and graduate students pursuing their degrees in computational intelligence.