Newton Type Methods For Optimization And Variational Problems

Download Newton Type Methods For Optimization And Variational Problems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Newton Type Methods For Optimization And Variational Problems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Newton-Type Methods for Optimization and Variational Problems

This book presents comprehensive state-of-the-art theoretical analysis of the fundamental Newtonian and Newtonian-related approaches to solving optimization and variational problems. A central focus is the relationship between the basic Newton scheme for a given problem and algorithms that also enjoy fast local convergence. The authors develop general perturbed Newtonian frameworks that preserve fast convergence and consider specific algorithms as particular cases within those frameworks, i.e., as perturbations of the associated basic Newton iterations. This approach yields a set of tools for the unified treatment of various algorithms, including some not of the Newton type per se. Among the new subjects addressed is the class of degenerate problems. In particular, the phenomenon of attraction of Newton iterates to critical Lagrange multipliers and its consequences as well as stabilized Newton methods for variational problems and stabilized sequential quadratic programming for optimization. This volume will be useful to researchers and graduate students in the fields of optimization and variational analysis.
Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces

Semismooth Newton methods are a modern class of remarkably powerful and versatile algorithms for solving constrained optimization problems with partial differential equations (PDEs), variational inequalities, and related problems. This book provides a comprehensive presentation of these methods in function spaces, striking a balance between thoroughly developed theory and numerical applications. Although largely self-contained, the book also covers recent developments in the field, such as state-constrained problems, and offers new material on topics such as improved mesh independence results. The theory and methods are applied to a range of practically important problems, including: optimal control of nonlinear elliptic differential equations, obstacle problems, and flow control of instationary Navier-Stokes fluids. In addition, the author covers adjoint-based derivative computation and the efficient solution of Newton systems by multigrid and preconditioned iterative methods.
Convergence and Applications of Newton-type Iterations

Author: Ioannis K. Argyros
language: en
Publisher: Springer Science & Business Media
Release Date: 2008-06-12
Recent results in local convergence and semi-local convergence analysis constitute a natural framework for the theoretical study of iterative methods. This monograph provides a comprehensive study of both basic theory and new results in the area. Each chapter contains new theoretical results and important applications in engineering, modeling dynamic economic systems, input-output systems, optimization problems, and nonlinear and linear differential equations. Several classes of operators are considered, including operators without Lipschitz continuous derivatives, operators with high order derivatives, and analytic operators. Each section is self-contained. Examples are used to illustrate the theory and exercises are included at the end of each chapter. The book assumes a basic background in linear algebra and numerical functional analysis. Graduate students and researchers will find this book useful. It may be used as a self-study reference or as a supplementary text for an advanced course in numerical functional analysis.