New Perspectives On The Theory Of Inequalities For Integral And Sum


Download New Perspectives On The Theory Of Inequalities For Integral And Sum PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get New Perspectives On The Theory Of Inequalities For Integral And Sum book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

New Perspectives on the Theory of Inequalities for Integral and Sum


New Perspectives on the Theory of Inequalities for Integral and Sum

Author: Nazia Irshad

language: en

Publisher: Springer Nature

Release Date: 2022-03-29


DOWNLOAD





This book provides new contributions to the theory of inequalities for integral and sum, and includes four chapters. In the first chapter, linear inequalities via interpolation polynomials and green functions are discussed. New results related to Popoviciu type linear inequalities via extension of the Montgomery identity, the Taylor formula, Abel-Gontscharoff's interpolation polynomials, Hermite interpolation polynomials and the Fink identity with Green’s functions, are presented. The second chapter is dedicated to Ostrowski’s inequality and results with applications to numerical integration and probability theory. The third chapter deals with results involving functions with nondecreasing increments. Real life applications are discussed, as well as and connection of functions with nondecreasing increments together with many important concepts including arithmetic integral mean, wright convex functions, convex functions, nabla-convex functions, Jensen m-convex functions, m-convex functions, m-nabla-convex functions, k-monotonic functions, absolutely monotonic functions, completely monotonic functions, Laplace transform and exponentially convex functions, by using the finite difference operator of order m. The fourth chapter is mainly based on Popoviciu and Cebysev-Popoviciu type identities and inequalities. In this last chapter, the authors present results by using delta and nabla operators of higher order.

Functional Inequalities: New Perspectives and New Applications


Functional Inequalities: New Perspectives and New Applications

Author: Nassif Ghoussoub

language: en

Publisher: American Mathematical Soc.

Release Date: 2013-04-09


DOWNLOAD





"The book describes how functional inequalities are often manifestations of natural mathematical structures and physical phenomena, and how a few general principles validate large classes of analytic/geometric inequalities, old and new. This point of view leads to "systematic" approaches for proving the most basic inequalities, but also for improving them, and for devising new ones--sometimes at will and often on demand. These general principles also offer novel ways for estimating best constants and for deciding whether these are attained in appropriate function spaces. As such, improvements of Hardy and Hardy-Rellich type inequalities involving radially symmetric weights are variational manifestations of Sturm's theory on the oscillatory behavior of certain ordinary differential equations. On the other hand, most geometric inequalities, including those of Sobolev and Log-Sobolev type, are simply expressions of the convexity of certain free energy functionals along the geodesics on the Wasserstein manifold of probability measures equipped with the optimal mass transport metric. Caffarelli-Kohn-Nirenberg and Hardy-Rellich-Sobolev type inequalities are then obtained by interpolating the above two classes of inequalities via the classical ones of Hölder. The subtle Moser-Onofri-Aubin inequalities on the two-dimensional sphere are connected to Liouville type theorems for planar mean field equations."--Publisher's website.

Integral and Finite Difference Inequalities and Applications


Integral and Finite Difference Inequalities and Applications

Author: B. G. Pachpatte

language: en

Publisher: Elsevier

Release Date: 2006-09-14


DOWNLOAD





The monograph is written with a view to provide basic tools for researchers working in Mathematical Analysis and Applications, concentrating on differential, integral and finite difference equations. It contains many inequalities which have only recently appeared in the literature and which can be used as powerful tools and will be a valuable source for a long time to come. It is self-contained and thus should be useful for those who are interested in learning or applying the inequalities with explicit estimates in their studies. - Contains a variety of inequalities discovered which find numerous applications in various branches of differential, integral and finite difference equations - Valuable reference for someone requiring results about inequalities for use in some applications in various other branches of mathematics - Highlights pure and applied mathematics and other areas of science and technology