New Numerical And Analytical Methods For Nonlinear Partial Differential Equations With Applications In Quantum Physics

Download New Numerical And Analytical Methods For Nonlinear Partial Differential Equations With Applications In Quantum Physics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get New Numerical And Analytical Methods For Nonlinear Partial Differential Equations With Applications In Quantum Physics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
New Numerical and Analytical Methods for Nonlinear Partial Differential Equations with Applications in Quantum Physics

Various numerical and analytical methods have been used to investigate the models of real-world phenomena. Namely, real-world models from quantum physics have been investigated by many researchers. This Research Topic aims to promote and exchange new and important theoretical and numerical results to study the dynamics of complex physical systems. In particular, the Research Topic will focus on numerical and analytical methods for nonlinear partial differential equations which have applications for quantum physical systems. Authors are encouraged to introduce their latest original research articles. The Research Topic will cover, but is not limited to, the following themes: - Mathematical methods in physics - Representations of Lie groups in physics - Quantum fields - Advanced numerical methods and techniques for nonlinear partial differential equations - Schrödinger classical and fractional operators - Conservation laws
Numerical and Analytical Methods in Electromagnetics

Like all branches of physics and engineering, electromagnetics relies on mathematical methods for modeling, simulation, and design procedures in all of its aspects (radiation, propagation, scattering, imaging, etc.). Originally, rigorous analytical techniques were the only machinery available to produce any useful results. In the 1960s and 1970s, emphasis was placed on asymptotic techniques, which produced approximations of the fields for very high frequencies when closed-form solutions were not feasible. Later, when computers demonstrated explosive progress, numerical techniques were utilized to develop approximate results of controllable accuracy for arbitrary geometries. In this Special Issue, the most recent advances in the aforementioned approaches are presented to illustrate the state-of-the-art mathematical techniques in electromagnetics.
Analytic Methods for Partial Differential Equations

Author: G. Evans
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
The subject of partial differential equations holds an exciting and special position in mathematics. Partial differential equations were not consciously created as a subject but emerged in the 18th century as ordinary differential equations failed to describe the physical principles being studied. The subject was originally developed by the major names of mathematics, in particular, Leonard Euler and Joseph-Louis Lagrange who studied waves on strings; Daniel Bernoulli and Euler who considered potential theory, with later developments by Adrien-Marie Legendre and Pierre-Simon Laplace; and Joseph Fourier's famous work on series expansions for the heat equation. Many of the greatest advances in modern science have been based on discovering the underlying partial differential equation for the process in question. J ames Clerk Maxwell, for example, put electricity and magnetism into a unified theory by estab lishing Maxwell's equations for electromagnetic theory, which gave solutions for problems in radio wave propagation, the diffraction of light and X-ray developments. Schrodinger's equation for quantum mechankal processes at the atomic level leads to experimentally verifiable results which have changed the face of atomic physics and chemistry in the 20th century. In fluid mechanics, the Navier-Stokes' equations form a basis for huge number-crunching activities associated with such widely disparate topics as weather forcasting and the design of supersonic aircraft. Inevitably the study of partial differential equations is a large undertaking, and falls into several areas of mathematics.