New Methods In Language Processing

Download New Methods In Language Processing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get New Methods In Language Processing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Speech and Language Processing

This book takes an empirical approach to language processing, based on applying statistical and other machine-learning algorithms to large corpora.Methodology boxes are included in each chapter. Each chapter is built around one or more worked examples to demonstrate the main idea of the chapter. Covers the fundamental algorithms of various fields, whether originally proposed for spoken or written language to demonstrate how the same algorithm can be used for speech recognition and word-sense disambiguation. Emphasis on web and other practical applications. Emphasis on scientific evaluation. Useful as a reference for professionals in any of the areas of speech and language processing.
Recent Advances in Natural Language Processing

Author: Ruslan Mitkov
language: en
Publisher: John Benjamins Publishing
Release Date: 1997-11-20
This volume is based on contributions from the First International Conference on “Recent Advances in Natural Language Processing” (RANLP’95) held in Tzigov Chark, Bulgaria, 14-16 September 1995. This conference was one of the most important and competitively reviewed conferences in Natural Language Processing (NLP) for 1995 with submissions from more than 30 countries. Of the 48 papers presented at RANLP’95, the best (revised) papers have been selected for this book, in the hope that they reflect the most significant and promising trends (and latest successful results) in NLP. The book is organised thematically and the contributions are grouped according to the traditional topics found in NLP: morphology, syntax, grammars, parsing, semantics, discourse, grammars, generation, machine translation, corpus processing and multimedia. To help the reader find his/her way, the authors have prepared an extensive index which contains major terms used in NLP; an index of authors which lists the names of the authors and the page numbers of their paper(s); a list of figures; and a list of tables. This book will be of interest to researchers, lecturers and graduate students interested in Natural Language Processing and more specifically to those who work in Computational Linguistics, Corpus Linguistics and Machine Translation.
Neural Network Methods for Natural Language Processing

Neural networks are a family of powerful machine learning models. This book focuses on the application of neural network models to natural language data. The first half of the book (Parts I and II) covers the basics of supervised machine learning and feed-forward neural networks, the basics of working with machine learning over language data, and the use of vector-based rather than symbolic representations for words. It also covers the computation-graph abstraction, which allows to easily define and train arbitrary neural networks, and is the basis behind the design of contemporary neural network software libraries. The second part of the book (Parts III and IV) introduces more specialized neural network architectures, including 1D convolutional neural networks, recurrent neural networks, conditioned-generation models, and attention-based models. These architectures and techniques are the driving force behind state-of-the-art algorithms for machine translation, syntactic parsing, and many other applications. Finally, we also discuss tree-shaped networks, structured prediction, and the prospects of multi-task learning.