New Frontier In Evolutionary Algorithms Theory And Applications


Download New Frontier In Evolutionary Algorithms Theory And Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get New Frontier In Evolutionary Algorithms Theory And Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

New Frontier In Evolutionary Algorithms: Theory And Applications


New Frontier In Evolutionary Algorithms: Theory And Applications

Author: Hitoshi Iba

language: en

Publisher: Imperial College Press

Release Date: 2011-08-26


DOWNLOAD





This book delivers theoretical and practical knowledge of Genetic Algorithms (GA) for the purpose of practical applications. It provides a methodology for a GA-based search strategy with the integration of several Artificial Life and Artificial Intelligence techniques, such as memetic concepts, swarm intelligence, and foraging strategies. The development of such tools contributes to better optimizing methodologies when addressing tasks from areas such as robotics, financial forecasting, and data mining in bioinformatics.The emphasis of this book is on applicability to the real world. Tasks from application areas - optimization of the trading rule in foreign exchange (FX) and stock prices, economic load dispatch in power system, exit/door placement for evacuation planning, and gene regulatory network inference in bioinformatics - are studied, and the resultant empirical investigations demonstrate how successful the proposed approaches are when solving real-world tasks of great importance.

Deep Neural Evolution


Deep Neural Evolution

Author: Hitoshi Iba

language: en

Publisher: Springer Nature

Release Date: 2020-05-20


DOWNLOAD





This book delivers the state of the art in deep learning (DL) methods hybridized with evolutionary computation (EC). Over the last decade, DL has dramatically reformed many domains: computer vision, speech recognition, healthcare, and automatic game playing, to mention only a few. All DL models, using different architectures and algorithms, utilize multiple processing layers for extracting a hierarchy of abstractions of data. Their remarkable successes notwithstanding, these powerful models are facing many challenges, and this book presents the collaborative efforts by researchers in EC to solve some of the problems in DL. EC comprises optimization techniques that are useful when problems are complex or poorly understood, or insufficient information about the problem domain is available. This family of algorithms has proven effective in solving problems with challenging characteristics such as non-convexity, non-linearity, noise, and irregularity, which dampen the performance of most classic optimization schemes. Furthermore, EC has been extensively and successfully applied in artificial neural network (ANN) research —from parameter estimation to structure optimization. Consequently, EC researchers are enthusiastic about applying their arsenal for the design and optimization of deep neural networks (DNN). This book brings together the recent progress in DL research where the focus is particularly on three sub-domains that integrate EC with DL: (1) EC for hyper-parameter optimization in DNN; (2) EC for DNN architecture design; and (3) Deep neuroevolution. The book also presents interesting applications of DL with EC in real-world problems, e.g., malware classification and object detection. Additionally, it covers recent applications of EC in DL, e.g. generative adversarial networks (GAN) training and adversarial attacks. The book aims to prompt and facilitate the research in DL with EC both in theory and in practice.

Real-life Applications with Membrane Computing


Real-life Applications with Membrane Computing

Author: Gexiang Zhang

language: en

Publisher: Springer

Release Date: 2017-04-05


DOWNLOAD





This book thoroughly investigates the underlying theoretical basis of membrane computing models, and reveals their latest applications. In addition, to date there have been no illustrative case studies or complex real-life applications that capitalize on the full potential of the sophisticated membrane systems computational apparatus; gaps that this book remedies. By studying various complex applications – including engineering optimization, power systems fault diagnosis, mobile robot controller design, and complex biological systems involving data modeling and process interactions – the book also extends the capabilities of membrane systems models with features such as formal verification techniques, evolutionary approaches, and fuzzy reasoning methods. As such, the book offers a comprehensive and up-to-date guide for all researchers, PhDs and undergraduate students in the fields of computer science, engineering and the bio-sciences who are interested in the applications of natural computing models.