New Developments In Lie Theory And Geometry


Download New Developments In Lie Theory And Geometry PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get New Developments In Lie Theory And Geometry book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

New Developments in Lie Theory and Geometry


New Developments in Lie Theory and Geometry

Author: Carolyn Gordon

language: en

Publisher: American Mathematical Soc.

Release Date: 2009


DOWNLOAD





This volume is an outgrowth of the Sixth Workshop on Lie Theory and Geometry, held in the province of Cordoba, Argentina in November 2007. The representation theory and structure theory of Lie groups play a pervasive role throughout mathematics and physics. Lie groups are tightly intertwined with geometry and each stimulates developments in the other. The aim of this volume is to bring to a larger audience the mutually beneficial interaction between Lie theorists and geometers that animated the workshop. Two prominent themes of the representation theoretic articles are Gelfand pairs and the representation theory of real reductive Lie groups. Among the more geometric articles are an exposition of major recent developments on noncompact homogeneous Einstein manifolds and aspects of inverse spectral geometry presented in settings accessible to readers new to the area.

Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics


Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics

Author: D.H. Sattinger

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-11-11


DOWNLOAD





This book is intended as an introductory text on the subject of Lie groups and algebras and their role in various fields of mathematics and physics. It is written by and for researchers who are primarily analysts or physicists, not algebraists or geometers. Not that we have eschewed the algebraic and geo metric developments. But we wanted to present them in a concrete way and to show how the subject interacted with physics, geometry, and mechanics. These interactions are, of course, manifold; we have discussed many of them here-in particular, Riemannian geometry, elementary particle physics, sym metries of differential equations, completely integrable Hamiltonian systems, and spontaneous symmetry breaking. Much ofthe material we have treated is standard and widely available; but we have tried to steer a course between the descriptive approach such as found in Gilmore and Wybourne, and the abstract mathematical approach of Helgason or Jacobson. Gilmore and Wybourne address themselvesto the physics community whereas Helgason and Jacobson address themselves to the mathematical community. This book is an attempt to synthesize the two points of view and address both audiences simultaneously. We wanted to present the subject in a way which is at once intuitive, geometric, applications oriented, mathematically rigorous, and accessible to students and researchers without an extensive background in physics, algebra, or geometry.

Advances in Analysis and Geometry


Advances in Analysis and Geometry

Author: Tao Qian

language: en

Publisher: Birkhäuser

Release Date: 2012-12-06


DOWNLOAD





On the 16th of October 1843, Sir William R. Hamilton made the discovery of the quaternion algebra H = qo + qli + q2j + q3k whereby the product is determined by the defining relations ·2 ·2 1 Z =] = - , ij = -ji = k. In fact he was inspired by the beautiful geometric model of the complex numbers in which rotations are represented by simple multiplications z ----t az. His goal was to obtain an algebra structure for three dimensional visual space with in particular the possibility of representing all spatial rotations by algebra multiplications and since 1835 he started looking for generalized complex numbers (hypercomplex numbers) of the form a + bi + cj. It hence took him a long time to accept that a fourth dimension was necessary and that commutativity couldn't be kept and he wondered about a possible real life meaning of this fourth dimension which he identified with the scalar part qo as opposed to the vector part ql i + q2j + q3k which represents a point in space.