Neural Networks From Scratch In Python Book


Download Neural Networks From Scratch In Python Book PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Neural Networks From Scratch In Python Book book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Neural Networks from Scratch in Python


Neural Networks from Scratch in Python

Author: Harrison Kinsley

language: en

Publisher:

Release Date: 2020


DOWNLOAD





Building Neural Networks from Scratch with Python


Building Neural Networks from Scratch with Python

Author: L D Knowings

language: en

Publisher:

Release Date: 2024-02-12


DOWNLOAD





Ready to throw your hat into the AI and machine learning ring? Get started right here, right now! Are you sick of these machine-learning guides that don't really teach you anything? Do you already know Python, but you're looking to expand your horizons and skills with the language? Do you want to dive into the amazing world of neural networks, but it just seems like it's... not for you? Artificial intelligence is progressing at a fantastic rate-every day, a new innovation hits the net, providing more and more opportunities for the advancement of society. In your everyday life, your job, and even in your passion projects, learning how to code a neural network can be game-changing. But it just seems... complicated. How do you learn everything that goes into such a complex topic without wanting to tear your own hair out? Well, it just got easier. Machine learning and neural networking don't have to be complicated-with the right resources, you can successfully code your very own neural network from scratch, minimal experience needed! In this all-encompassing guide to coding neural networks in Python, you'll uncover everything you need to go from zero to hero-transforming how you code and the scope of your knowledge right before your eyes. Here's just a portion of what you will discover in this guide: ● A comprehensive look at what a neural network is - including why you would use one and the benefits of including them in your repertoire ● All that pesky math dissuading you? Get right to the meat and potatoes of coding without all of those confusing equations getting you down ● Become a debugging master with these tips for handling code problems, maximizing your efficiency as a coder, and testing the data within your code ● Technological advancements galore! Learn how to keep up with all the latest trends in tech-and why doing so is important to you ● What in the world are layers and gradients? Detailed explanations of complex topics that will demystify neural networks, once and for all ● Dealing with underfitting, overfitting, and other oversights that many other resources overlook ● Several beginner-friendly neural network projects to put your newfound knowledge to the test And much more. Imagine a world where machine learning is more accessible, where neural networks and other complex topics are available to people just like you-people with a passion. Allowing for such technological advancements is going to truly change our world. It might seem hard, and you might be concerned based on other resources you've browsed-but this isn't an opportunity you can pass up on! By the end of this book, you'll have mastered neural networks confidently!

Deep Learning from Scratch


Deep Learning from Scratch

Author: Seth Weidman

language: en

Publisher: O'Reilly Media

Release Date: 2019-09-09


DOWNLOAD





With the resurgence of neural networks in the 2010s, deep learning has become essential for machine learning practitioners and even many software engineers. This book provides a comprehensive introduction for data scientists and software engineers with machine learning experience. You’ll start with deep learning basics and move quickly to the details of important advanced architectures, implementing everything from scratch along the way. Author Seth Weidman shows you how neural networks work using a first principles approach. You’ll learn how to apply multilayer neural networks, convolutional neural networks, and recurrent neural networks from the ground up. With a thorough understanding of how neural networks work mathematically, computationally, and conceptually, you’ll be set up for success on all future deep learning projects. This book provides: Extremely clear and thorough mental models—accompanied by working code examples and mathematical explanations—for understanding neural networks Methods for implementing multilayer neural networks from scratch, using an easy-to-understand object-oriented framework Working implementations and clear-cut explanations of convolutional and recurrent neural networks Implementation of these neural network concepts using the popular PyTorch framework