Neural Networks And Deep Learning A Textbook Pdf

Download Neural Networks And Deep Learning A Textbook Pdf PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Neural Networks And Deep Learning A Textbook Pdf book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Neural Networks and Deep Learning

This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories: The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec. Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines. Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10. The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.
Machine Learning and Deep Learning With Python

This book is a comprehensive guide to understanding and implementing cutting-edge machine learning and deep learning techniques using Python programming language. Written with both beginners and experienced developers in mind, this book provides a thorough overview of the foundations of machine learning and deep learning, including mathematical fundamentals, optimization algorithms, and neural networks. Starting with the basics of Python programming, this book gradually builds up to more advanced topics, such as artificial neural networks, convolutional neural networks, and generative adversarial networks. Each chapter is filled with clear explanations, practical examples, and step-by-step tutorials that allow readers to gain a deep understanding of the underlying principles of machine learning and deep learning. Throughout the book, readers will also learn how to use popular Python libraries and packages, including numpy, pandas, scikit-learn, TensorFlow, and Keras, to build and train powerful machine learning and deep learning models for a variety of real-world applications, such as regression and classification, K-means, support vector machines, and recommender systems. Whether you are a seasoned data scientist or a beginner looking to enter the world of machine learning, this book is the ultimate resource for mastering these cutting-edge technologies and taking your skills to the next level. High-school level of mathematical knowledge and all levels (including entry-level) of programming skills are good to start, all Python codes are available at Github.com. Table Of Contents 1 Introduction 1.1 Artificial Intelligence, Machine Learning and Deep Learning 1.2 Whom This Book Is For 1.3 How This Book Is Organized 2 Environments 2.1 Source Codes for This Book 2.2 Cloud Environments 2.3 Docker Hosted on Local Machine 2.4 Install on Local Machines 2.5 Install Required Packages 3 Math Fundamentals 3.1 Linear Algebra 3.2 Calculus 3.3 Advanced Functions 4 Machine Learning 4.1 Linear Regression 4.2 Logistic Regression 4.3 Multinomial Logistic Regression 4.4 K-Means Clustering 4.5 Principal Component Analysis (PCA) 4.6 Support Vector Machine (SVM) 4.7 K-Nearest Neighbors 4.8 Anomaly Detection 4.9 Artificial Neural Network (ANN) 4.10 Convolutional Neural Network (CNN) 4.11 Recommendation System 4.12 Generative Adversarial Network References About the Author
Data Analytics and Artificial Intelligence for Inventory and Supply Chain Management

This book considers new analytics and AI approaches in the areas of inventory control, logistics, and supply chain management. It provides valuable insights for the retailers and managers to improve business operations and make more realistic and better decisions. It also offers a number of smartly designed strategies related to inventory control and supply chain management for the optimal ordering and delivery policies. The book further uses detailed models and AI computing approaches for demand forecasting to planning optimization and digital execution tracking. One of its key features is use of real-life examples, case studies, practical models to ensure adoption of new solutions, data analytics, and AI-lead automation methodologies are included.The book can be utilized by retailers and managers to improve business operations and make more accurate and realistic decisions. The AI-based solution, agnostic assessment, and strategy will support the companies for better alignment and inventory control and capabilities to create a strategic road map for supply chain and logistics. The book is also useful for postgraduate students, researchers, and corporate executives. It addresses novel solutions for inventory to real-world supply chain and logistics that retailers, practitioners, educators, and scholars will find useful. It provides the theoretical and applicable subject matters for the senior undergraduate and graduate students, researchers, practitioners, and professionals in the area of artificial intelligent computing and its applications in inventory and supply chain management, inventory control, and logistics.