Neural Network Programming


Download Neural Network Programming PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Neural Network Programming book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Hands-On Neural Network Programming with C#


Hands-On Neural Network Programming with C#

Author: Matt R. Cole

language: en

Publisher: Packt Publishing Ltd

Release Date: 2018-09-29


DOWNLOAD





Create and unleash the power of neural networks by implementing C# and .Net code Key FeaturesGet a strong foundation of neural networks with access to various machine learning and deep learning librariesReal-world case studies illustrating various neural network techniques and architectures used by practitionersCutting-edge coverage of Deep Networks, optimization algorithms, convolutional networks, autoencoders and many moreBook Description Neural networks have made a surprise comeback in the last few years and have brought tremendous innovation in the world of artificial intelligence. The goal of this book is to provide C# programmers with practical guidance in solving complex computational challenges using neural networks and C# libraries such as CNTK, and TensorFlowSharp. This book will take you on a step-by-step practical journey, covering everything from the mathematical and theoretical aspects of neural networks, to building your own deep neural networks into your applications with the C# and .NET frameworks. This book begins by giving you a quick refresher of neural networks. You will learn how to build a neural network from scratch using packages such as Encog, Aforge, and Accord. You will learn about various concepts and techniques, such as deep networks, perceptrons, optimization algorithms, convolutional networks, and autoencoders. You will learn ways to add intelligent features to your .NET apps, such as facial and motion detection, object detection and labeling, language understanding, knowledge, and intelligent search. Throughout this book, you will be working on interesting demonstrations that will make it easier to implement complex neural networks in your enterprise applications. What you will learnUnderstand perceptrons and how to implement them in C#Learn how to train and visualize a neural network using cognitive servicesPerform image recognition for detecting and labeling objects using C# and TensorFlowSharpDetect specific image characteristics such as a face using Accord.NetDemonstrate particle swarm optimization using a simple XOR problem and EncogTrain convolutional neural networks using ConvNetSharpFind optimal parameters for your neural network functions using numeric and heuristic optimization techniques.Who this book is for This book is for Machine Learning Engineers, Data Scientists, Deep Learning Aspirants and Data Analysts who are now looking to move into advanced machine learning and deep learning with C#. Prior knowledge of machine learning and working experience with C# programming is required to take most out of this book

Neural Network Programming with TensorFlow


Neural Network Programming with TensorFlow

Author: Manpreet Singh Ghotra

language: en

Publisher: Packt Publishing Ltd

Release Date: 2017-11-10


DOWNLOAD





Neural Networks and their implementation decoded with TensorFlow About This Book Develop a strong background in neural network programming from scratch, using the popular Tensorflow library. Use Tensorflow to implement different kinds of neural networks – from simple feedforward neural networks to multilayered perceptrons, CNNs, RNNs and more. A highly practical guide including real-world datasets and use-cases to simplify your understanding of neural networks and their implementation. Who This Book Is For This book is meant for developers with a statistical background who want to work with neural networks. Though we will be using TensorFlow as the underlying library for neural networks, book can be used as a generic resource to bridge the gap between the math and the implementation of deep learning. If you have some understanding of Tensorflow and Python and want to learn what happens at a level lower than the plain API syntax, this book is for you. What You Will Learn Learn Linear Algebra and mathematics behind neural network. Dive deep into Neural networks from the basic to advanced concepts like CNN, RNN Deep Belief Networks, Deep Feedforward Networks. Explore Optimization techniques for solving problems like Local minima, Global minima, Saddle points Learn through real world examples like Sentiment Analysis. Train different types of generative models and explore autoencoders. Explore TensorFlow as an example of deep learning implementation. In Detail If you're aware of the buzz surrounding the terms such as "machine learning," "artificial intelligence," or "deep learning," you might know what neural networks are. Ever wondered how they help in solving complex computational problem efficiently, or how to train efficient neural networks? This book will teach you just that. You will start by getting a quick overview of the popular TensorFlow library and how it is used to train different neural networks. You will get a thorough understanding of the fundamentals and basic math for neural networks and why TensorFlow is a popular choice Then, you will proceed to implement a simple feed forward neural network. Next you will master optimization techniques and algorithms for neural networks using TensorFlow. Further, you will learn to implement some more complex types of neural networks such as convolutional neural networks, recurrent neural networks, and Deep Belief Networks. In the course of the book, you will be working on real-world datasets to get a hands-on understanding of neural network programming. You will also get to train generative models and will learn the applications of autoencoders. By the end of this book, you will have a fair understanding of how you can leverage the power of TensorFlow to train neural networks of varying complexities, without any hassle. While you are learning about various neural network implementations you will learn the underlying mathematics and linear algebra and how they map to the appropriate TensorFlow constructs. Style and Approach This book is designed to give you just the right number of concepts to back up the examples. With real-world use cases and problems solved, this book is a handy guide for you. Each concept is backed by a generic and real-world problem, followed by a variation, making you independent and able to solve any problem with neural networks. All of the content is demystified by a simple and straightforward approach.

Neural Network Programming with Java - Second Edition


Neural Network Programming with Java - Second Edition

Author: Alan M. F. Souza

language: en

Publisher:

Release Date: 2017-02-28


DOWNLOAD





Create and unleash the power of neural networks by implementing professional, clean, and clear Java codeAbout This Book* Learn to build amazing projects using neural networks including forecasting the weather and pattern recognition* Explore the Java multi-platform feature to run your personal neural networks everywhere* This step-by-step guide will help you solve real-world problems and links neural network theory to their applicationWho This Book Is ForThis book is for Java developers who want to know how to develop smarter applications using the power of neural networks. Those who deal with a lot of complex data and want to use it efficiently in their day-to-day apps will find this book quite useful. Some basic experience with statistical computations is expected.What You Will Learn* Develop an understanding of neural networks and how they can be fitted* Explore the learning process of neural networks* Build neural network applications with Java using hands-on examples* Discover the power of neural network's unsupervised learning process to extract the intrinsic knowledge hidden behind the data* Apply the code generated in practical examples, including weather forecasting and pattern recognition* Understand how to make the best choice of learning parameters to ensure you have a more effective application* Select and split data sets into training, test, and validation, and explore validation strategiesIn DetailWant to discover the current state-of-art in the field of neural networks that will let you understand and design new strategies to apply to more complex problems? This book takes you on a complete walkthrough of the process of developing basic to advanced practical examples based on neural networks with Java, giving you everything you need to stand out.You will first learn the basics of neural networks and their process of learning. We then focus on what Perceptrons are and their features. Next, you will implement self-organizing maps using practical examples. Further on, you will learn about some of the applications that are presented in this book such as weather forecasting, disease diagnosis, customer profiling, generalization, extreme machine learning, and characters recognition (OCR). Finally, you will learn methods to optimize and adapt neural networks in real time.All the examples generated in the book are provided in the form of illustrative source code, which merges object-oriented programming (OOP) concepts and neural network features to enhance your learning experience.