Neural Network Programming With Java


Download Neural Network Programming With Java PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Neural Network Programming With Java book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Neural Network Programming with Java


Neural Network Programming with Java

Author: David V.

language: en

Publisher: Createspace Independent Publishing Platform

Release Date: 2017-02-28


DOWNLOAD





This book is an exploration of neural networks and how to implement them in Java. First, the reader is guided so as to understand what neural networks are. You will learn how they operate. The process of learning in neural networks is very important. This is the concept which makes neural networks behave in the same manner as the brain of human beings. This process is discussed in this book. You are also guided on how to implement this in Java. The Java lego robots are very common in the field of artificial intelligence. This book guides you on how to implement these in Java. Recurrent neural networks, which are believed to have memory, are discussed in detail. These work in such a way that the value will be calculated based on the value obtained in the previous step. You will learn how to implement such a network in Java. Convolutional neural networks are also explored in detail. You will learn how these work as well as how to implement them in Java. The following topics are discussed in this book: -Understanding Neural Networks -Learning in Neural Networks -Java Lego Robots Neural Network -Convolutional Neural Networks -Recurrent Neural Networks

Deep Learning: Practical Neural Networks with Java


Deep Learning: Practical Neural Networks with Java

Author: Yusuke Sugomori

language: en

Publisher: Packt Publishing Ltd

Release Date: 2017-06-08


DOWNLOAD





Build and run intelligent applications by leveraging key Java machine learning libraries About This Book Develop a sound strategy to solve predictive modelling problems using the most popular machine learning Java libraries. Explore a broad variety of data processing, machine learning, and natural language processing through diagrams, source code, and real-world applications This step-by-step guide will help you solve real-world problems and links neural network theory to their application Who This Book Is For This course is intended for data scientists and Java developers who want to dive into the exciting world of deep learning. It will get you up and running quickly and provide you with the skills you need to successfully create, customize, and deploy machine learning applications in real life. What You Will Learn Get a practical deep dive into machine learning and deep learning algorithms Explore neural networks using some of the most popular Deep Learning frameworks Dive into Deep Belief Nets and Stacked Denoising Autoencoders algorithms Apply machine learning to fraud, anomaly, and outlier detection Experiment with deep learning concepts, algorithms, and the toolbox for deep learning Select and split data sets into training, test, and validation, and explore validation strategies Apply the code generated in practical examples, including weather forecasting and pattern recognition In Detail Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognitionStarting with an introduction to basic machine learning algorithms, this course takes you further into this vital world of stunning predictive insights and remarkable machine intelligence. This course helps you solve challenging problems in image processing, speech recognition, language modeling. You will discover how to detect anomalies and fraud, and ways to perform activity recognition, image recognition, and text. You will also work with examples such as weather forecasting, disease diagnosis, customer profiling, generalization, extreme machine learning and more. By the end of this course, you will have all the knowledge you need to perform deep learning on your system with varying complexity levels, to apply them to your daily work. The course provides you with highly practical content explaining deep learning with Java, from the following Packt books: Java Deep Learning Essentials Machine Learning in Java Neural Network Programming with Java, Second Edition Style and approach This course aims to create a smooth learning path that will teach you how to effectively use deep learning with Java with other de facto components to get the most out of it. Through this comprehensive course, you'll learn the basics of predictive modelling and progress to solve real-world problems and links neural network theory to their application

Neural Network Programming with Java


Neural Network Programming with Java

Author: Alan Souza

language: en

Publisher: Packt Publishing

Release Date: 2016-01-13


DOWNLOAD





Create and unleash the power of neural networks by implementing professional Java codeAbout This Book• Learn to build amazing projects using neural networks including forecasting the weather and pattern recognition• Explore the Java multi-platform feature to run your personal neural networks everywhere• This step-by-step guide will help you solve real-world problems and links neural network theory to their applicationWho This Book Is ForThis book is for Java developers with basic Java programming knowledge. No previous knowledge of neural networks is required as this book covers the concepts from scratch.What You Will Learn• Get to grips with the basics of neural networks and what they are used for• Develop neural networks using hands-on examples• Explore and code the most widely-used learning algorithms to make your neural network learn from most types of data• Discover the power of neural network's unsupervised learning process to extract the intrinsic knowledge hidden behind the data• Apply the code generated in practical examples, including weather forecasting and pattern recognition• Understand how to make the best choice of learning parameters to ensure you have a more effective application• Select and split data sets into training, test, and validation, and explore validation strategies• Discover how to improve and optimize your neural networkIn DetailVast quantities of data are produced every second. In this context, neural networks become a powerful technique to extract useful knowledge from large amounts of raw, seemingly unrelated data. One of the most preferred languages for neural network programming is Java as it is easier to write code using it, and most of the most popular neural network packages around already exist for Java. This makes it a versatile programming language for neural networks.This book gives you a complete walkthrough of the process of developing basic to advanced practical examples based on neural networks with Java.You will first learn the basics of neural networks and their process of learning. We then focus on what Perceptrons are and their features. Next, you will implement self-organizing maps using the concepts you've learned. Furthermore, you will learn about some of the applications that are presented in this book such as weather forecasting, disease diagnosis, customer profiling, and characters recognition (OCR). Finally, you will learn methods to optimize and adapt neural networks in real time.All the examples generated in the book are provided in the form of illustrative source code, which merges object-oriented programming (OOP) concepts and neural network features to enhance your learning experience.Style and approachThis book adopts a step-by-step approach to neural network development and provides many hands-on examples using Java programming. Each neural network concept is explored through real-world problems and is delivered in an easy-to-comprehend manner.