Neocortical Neurogenesis In Development And Evolution

Download Neocortical Neurogenesis In Development And Evolution PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Neocortical Neurogenesis In Development And Evolution book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Neocortical Neurogenesis in Development and Evolution

Author: Wieland B. Huttner
language: en
Publisher: John Wiley & Sons
Release Date: 2023-08-08
NEOCORTICAL NEUROGENESIS IN DEVELOPMENT AND EVOLUTION Understanding the development and evolution of the mammalian neocortex The development of the mammalian brain, including the human brain, is inextricably linked with its evolution. Of particular interest is the development of the neocortex, the youngest part of the cerebral cortex in evolutionary terms and the seat of such vital functions as sensory perception, generation of motor commands, and higher-order cognition. The process of neurogenesis is crucial to the formation and function of the neocortex, but this process is complex, based on species-specific adaptations of old and acquired new traits that subserve specific functions introduced during mammalian evolution. Neocortical Neurogenesis in Development and Evolution provides a groundbreaking and comprehensive overview of neurogenesis in the developing neocortex and its evolutionary implications. It covers the generation of neurons and their migration to their functional positions, neural patterning, cortical folding, and variations and malformations of cortical development. Readers will find: A comprehensive review of the evolution and development of the neocortex in mammals — the part of our brain involved in the higher cognitive functions A multitude of subject disciplines ranging from neuroscience, molecular biology, genetics, developmental biology, evolutionary biology and medicine to provide a holistic understanding of the evolutionary youngest part of the cerebral cortex Coverage of neurogenesis in the developing neocortex and how this contributes to our understanding of the evolutionary implications Neocortical Neurogenesis in Development and Evolution is essential for researchers and postgraduates in neuroscience, developmental biology, evolutionary biology, and medical research.
Cortical Development

This book reviews recent progress in cortical development research, focusing on the mechanisms of neural stem cell regulation, neuronal diversity and connectivity formation, and neocortical organization. Development of the cerebral cortex, the center for higher brain functions such as cognition, memory, and decision making, is one of the major targets of current research. The cerebral cortex is divided into many areas, including motor, sensory, and visual cortices, each of which consists of six layers containing a variety of neurons with different activities and connections. As this book explains, such diversity in neuronal types and connections is generated at various levels. First, neural stem cells change their competency over time, giving sequential rise to distinct types of neurons and glial cells: initially deep layer neurons, then superficial layer neurons, and lastly astrocytes. The activities and connections of neurons are further modulated via interactions with other brain regions, such as the thalamocortical circuit, and via input from the environment. This book on cortical development is essential reading for students, postdocs, and neurobiologists.
The Neocortex

Experts review the latest research on the neocortex and consider potential directions for future research. Over the past decade, technological advances have dramatically increased information on the structural and functional organization of the brain, especially the cerebral cortex. This explosion of data has radically expanded our ability to characterize neural circuits and intervene at increasingly higher resolutions, but it is unclear how this has informed our understanding of underlying mechanisms and processes. In search of a conceptual framework to guide future research, leading researchers address in this volume the evolution and ontogenetic development of cortical structures, the cortical connectome, and functional properties of neuronal circuits and populations. They explore what constitutes “uniquely human” mental capacities and whether neural solutions and computations can be shared across species or repurposed for potentially uniquely human capacities. Contributors Danielle S. Bassett, Randy M. Bruno, Elizabeth A. Buffalo, Michael E. Coulter, Hermann Cuntz, Stanislas Dehaene, James J. DiCarlo, Pascal Fries, Karl J. Friston, Asif A. Ghazanfar, Anne-Lise Giraud, Joshua I. Gold, Scott T. Grafton, Jennifer M. Groh, Elizabeth A. Grove, Saskia Haegens, Kenneth D. Harris, Kristen M. Harris, Nicholas G. Hatsopoulos, Tarik F. Haydar, Takao K. Hensch, Wieland B. Huttner, Matthias Kaschube, Gilles Laurent, David A. Leopold, Johannes Leugering, Belen Lorente-Galdos, Jason N. MacLean, David A. McCormick, Lucia Melloni, Anish Mitra, Zoltán Molnár, Sydney K. Muchnik, Pascal Nieters, Marcel Oberlaender, Bijan Pesaran, Christopher I. Petkov, Gordon Pipa, David Poeppel, Marcus E. Raichle, Pasko Rakic, John H. Reynolds, Ryan V. Raut, John L. Rubenstein, Andrew B. Schwartz, Terrence J. Sejnowski, Nenad Sestan, Debra L. Silver, Wolf Singer, Peter L. Strick, Michael P. Stryker, Mriganka Sur, Mary Elizabeth Sutherland, Maria Antonietta Tosches, William A. Tyler, Martin Vinck, Christopher A. Walsh, Perry Zurn