Neighborhood Semantics For Modal Logic


Download Neighborhood Semantics For Modal Logic PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Neighborhood Semantics For Modal Logic book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Neighborhood Semantics for Modal Logic


Neighborhood Semantics for Modal Logic

Author: Eric Pacuit

language: en

Publisher: Springer

Release Date: 2017-11-15


DOWNLOAD





This book offers a state-of-the-art introduction to the basic techniques and results of neighborhood semantics for modal logic. In addition to presenting the relevant technical background, it highlights both the pitfalls and potential uses of neighborhood models – an interesting class of mathematical structures that were originally introduced to provide a semantics for weak systems of modal logic (the so-called non-normal modal logics). In addition, the book discusses a broad range of topics, including standard modal logic results (i.e., completeness, decidability and definability); bisimulations for neighborhood models and other model-theoretic constructions; comparisons with other semantics for modal logic (e.g., relational models, topological models, plausibility models); neighborhood semantics for first-order modal logic, applications in game theory (coalitional logic and game logic); applications in epistemic logic (logics of evidence and belief); and non-normal modal logics with dynamic modalities. The book can be used as the primary text for seminars on philosophical logic focused on non-normal modal logics; as a supplemental text for courses on modal logic, logic in AI, or philosophical logic (either at the undergraduate or graduate level); or as the primary source for researchers interested in learning about the uses of neighborhood semantics in philosophical logic and game theory.

Hajnal Andréka and István Németi on Unity of Science


Hajnal Andréka and István Németi on Unity of Science

Author: Judit Madarász

language: en

Publisher: Springer Nature

Release Date: 2021-05-31


DOWNLOAD





This book features more than 20 papers that celebrate the work of Hajnal Andréka and István Németi. It illustrates an interaction between developing and applying mathematical logic. The papers offer new results as well as surveys in areas influenced by these two outstanding researchers. They also provide details on the after-life of some of their initiatives. Computer science connects the papers in the first part of the book. The second part concentrates on algebraic logic. It features a range of papers that hint at the intricate many-way connections between logic, algebra, and geometry. The third part explores novel applications of logic in relativity theory, philosophy of logic, philosophy of physics and spacetime, and methodology of science. They include such exciting subjects as time travelling in emergent spacetime. The short autobiographies of Hajnal Andréka and István Németi at the end of the book describe an adventurous journey from electric engineering and Maxwell’s equations to a complex system of computer programs for designing Hungary’s electric power system, to exploring and contributing deep results to Tarskian algebraic logic as the deepest core theory of such questions, then on to applications of the results in such exciting new areas as relativity theory in order to rejuvenate logic itself.

Dynamic Logic


Dynamic Logic

Author: David Harel

language: en

Publisher: MIT Press

Release Date: 2000-09-29


DOWNLOAD





This book provides the first comprehensive introduction to Dynamic Logic. Among the many approaches to formal reasoning about programs, Dynamic Logic enjoys the singular advantage of being strongly related to classical logic. Its variants constitute natural generalizations and extensions of classical formalisms. For example, Propositional Dynamic Logic (PDL) can be described as a blend of three complementary classical ingredients: propositional calculus, modal logic, and the algebra of regular events. In First-Order Dynamic Logic (DL), the propositional calculus is replaced by classical first-order predicate calculus. Dynamic Logic is a system of remarkable unity that is theoretically rich as well as of practical value. It can be used for formalizing correctness specifications and proving rigorously that those specifications are met by a particular program. Other uses include determining the equivalence of programs, comparing the expressive power of various programming constructs, and synthesizing programs from specifications. This book provides the first comprehensive introduction to Dynamic Logic. It is divided into three parts. The first part reviews the appropriate fundamental concepts of logic and computability theory and can stand alone as an introduction to these topics. The second part discusses PDL and its variants, and the third part discusses DL and its variants. Examples are provided throughout, and exercises and a short historical section are included at the end of each chapter.