Nature S Patterns And The Fractional Calculus

Download Nature S Patterns And The Fractional Calculus PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Nature S Patterns And The Fractional Calculus book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Nature’s Patterns and the Fractional Calculus

Author: Bruce J. West
language: en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date: 2017-09-11
Complexity increases with increasing system size in everything from organisms to organizations. The nonlinear dependence of a system’s functionality on its size, by means of an allometry relation, is argued to be a consequence of their joint dependency on complexity (information). In turn, complexity is proven to be the source of allometry and to provide a new kind of force entailed by a system‘s information gradient. Based on first principles, the scaling behavior of the probability density function is determined by the exact solution to a set of fractional differential equations. The resulting lowest order moments in system size and functionality gives rise to the empirical allometry relations. Taking examples from various topics in nature, the book is of interest to researchers in applied mathematics, as well as, investigators in the natural, social, physical and life sciences. Contents Complexity Empirical allometry Statistics, scaling and simulation Allometry theories Strange kinetics Fractional probability calculus
Nature's Patterns and the Fractional Calculus

Complexity increases with increasing system size in everything from organisms to organizations. The nonlinear dependence of a system's functionality on its size, by means of an allometry relation, is argued to be a consequence of their joint dependency on complexity (information). In turn, complexity is proven to be the source of allometry and to provide a new kind of force entailed by a system's information gradient. Based on first principles, the scaling behavior of the probability density function is determined by the exact solution to a set of fractional differential equations. The resulting lowest order moments in system size and functionality gives rise to the empirical allometry relations. Taking examples from various topics in nature, the book is of interest to researchers in applied mathematics, as well as, investigators in the natural, social, physical and life sciences. ContentsComplexityEmpirical allometryStatistics, scaling and simulationAllometry theoriesStrange kineticsFractional probability calculus.
Complexus Mundi: Emergent Patterns In Nature

The dynamics of complex systems can clarify the creation of structures in Nature. This creation is driven by the collective interaction of constitutive elements of the system. Such interactions are frequently nonlinear and are directly responsible for the lack of prediction in the evolution process. The self-organization accompanying these processes occurs all around us and is constantly being rediscovered, under the guise of a new jargon, in apparently unrelated disciplines.This volume offers unique perspectives on aspects of fractals and complexity and, through the examination of complementary techniques, provides a unifying thread in this multidisciplinary endeavor. Do nonlinear interactions play a role in the complexity management of socio-econo-political systems? Is it possible to extract the global properties of genetic regulatory networks without knowing the details of individual genes? What can one learn by transplanting the self-organization effects known in laser processes to the study of emotions? What can the change in the level of complexity tell us about the physiological state of the organism? The reader will enjoy finding the answers to these questions and many more in this book.