Nanosensors And Nanodevices For Smart Multifunctional Textiles

Download Nanosensors And Nanodevices For Smart Multifunctional Textiles PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Nanosensors And Nanodevices For Smart Multifunctional Textiles book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Nanosensors and Nanodevices for Smart Multifunctional Textiles

Nanotechnology has been incorporated into a wide range of garments to improve the durability of clothing / apparel and create new properties for a special end-used application. It also incorporates wearable electronics into clothing to make it smarter. Smart nano-textiles refers to the uses and integration of smart nanocoatings, nanosensors and nanodevices in multifunctional textiles, since they are both low cost and have low power consumption. Various organic and inorganic nanomaterials can be used in garments to improve their properties and create new properties such as anti-bacterial, superhydrophobic, auto-cleaning, self-cleaning, stain repellent, wrinkle-free, static eliminating, fire resistant and electrically conductive properties. This book focuses on the fundamental concepts and approaches for the preparation of smart nanotextiles, their properties, and their applications in multifarious industries, including smart garments, biomedicine, construction/building materials, energy conversion/storage, automotive/aerospace industries and agriculture. - Shows how nanotechnology is being used to be able to enhance textiles with smart properties, including anti-bacterial, superhydrophobic and auto-cleaning - Explores which nanomaterial types are most compatible with particular textile classes - Assesses the major challenges of integrating nanosensors and nanodevices into textiles
Textile-Based Advanced Materials

Developments in the science and technology of textiles are not only limited to apparel and fashion. Certainly, there are research efforts aimed at improving the construction and processing of textiles for clothing—such as studies on cleaner production to reduce environmental impact, increasing the utilization of fibers and process chemicals from renewable resources, and on the recycling of materials from post-consumer waste apparel back into the manufacturing of new clothing articles. In addition, technological concepts developed for the creation of clothing over the centuries are now being investigated for use in a diverse array of fields—such as in the manufacture of engineering composites, personal protective equipment, and medicine. Further, developments in other fields—such as electronics, nanotechnology, and information and communication technologies—are being investigated for their incorporation into apparel and clothing to create “smart textiles”. The aim of this Special Issue is to put together a collection of scientific reports on such efforts to highlight the range of scientific and technological issues that are being targeted and the ingenuity of the methodologies employed to find answers. It is hoped that readers of this issue will come away with an appreciation of the research being conducted in this area, and perhaps gain inspiration for their own scientific endeavors.
Nanosensors for Futuristic Smart and Intelligent Healthcare Systems

The book, Nanosensors for Futuristic Smart and Intelligent Healthcare Systems, presents a treatise on nanosensors technology including wearables, implantable devices and wireless tools. The recent pandemic (COVID-19) has changed the behaviour of people towards diagnosis of infectious diseases and monitoring remote patient health status in real-time. The main focus of this book is the basic concepts of nanomaterials and sensing paradigms for medical devices based on nanosensor technology. The book will be valuable to researchers, engineers and scientists interested in the field of healthcare for monitoring health status in real-time.