Nanoelectronics With A Background In Nanotechnology

Download Nanoelectronics With A Background In Nanotechnology PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Nanoelectronics With A Background In Nanotechnology book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Nanoelectronics with a background in Nanotechnology

Author: Dr Dalvinder Singh Grewal
language: en
Publisher: Archers & Elevators Publishing House
Release Date:
Nanotechnology

The emergence of nanoscience portends a revolution in technology that will soon impact virtually every facet of our technological lives. Yet there is little understanding of what it is among the educated public and often among scientists and engineers in other disciplines. Furthermore, despite the emergence of undergraduate courses on the subject, no basic textbooks exist. Nanotechnology: Basic Science and Emerging Technologies bridges the gap between detailed technical publications that are beyond the grasp of nonspecialists and popular science books, which may be more science fiction than fact. It provides a fascinating, scientifically sound treatment, accessible to engineers and scientists outside the field and even to students at the undergraduate level. After a basic introduction to the field, the authors explore topics that include molecular nanotechnology, nanomaterials and nanopowders, nanoelectronics, optics and photonics, and nanobiometrics. The book concludes with a look at some cutting-edge applications and prophecies for the future. Nanoscience will bring to the world technologies that today we can only imagine and others of which we have not yet dreamt. This book lays the groundwork for that future by introducing the subject to those outside the field, sparking the imaginations of tomorrow's scientists, and challenging them all to participate in the advances that will bring nanotechnology's potential to fruition.
Nanoelectronics: A Molecular View

Author: Avik Ghosh
language: en
Publisher: World Scientific Publishing Company
Release Date: 2016-09-29
'This is one of the best available graduate-level textbooks on electronic transport at the nanoscale. Its unique feature is providing a thorough and completely self-contained treatment of several theoretical formalisms for treating the transport problem. As such, the book is useful not only for the graduate students working in the field of nanoscale electrical transport, but also for the researchers who wish to expand their knowledge of various fundamental issues associated with this rapidly developing field. Of particular note are deep physical insights accompanying the rigorous mathematical derivations in each of the chapters, as well as the clear statement of all the approximations involved in a particular theoretical formalism. This winning combination makes the book very accessible to a reader with basic knowledge of quantum mechanics, solid state theory and thermodynamics/statistical mechanics. I give this book the highest recommendation.' [Read Full Review]Serfei A EgorovUniveristy of Virginia, USAThis book is aimed at senior undergraduates, graduate students and researchers interested in quantitative understanding and modeling of nanomaterial and device physics. With the rapid slow-down of semiconductor scaling that drove information technology for decades, there is a pressing need to understand and model electron flow at its fundamental molecular limits. The purpose of this book is to enable such a deconstruction needed to design the next generation memory, logic, sensor and communication elements. Through numerous case studies and topical examples relating to emerging technology, this book connects 'top down' classical device physics taught in electrical engineering classes with 'bottom up' quantum and many-body transport physics taught in physics and chemistry. The book assumes no more than a nodding acquaintance with quantum mechanics, in addition to knowledge of freshman level mathematics. Segments of this book are useful as a textbook for a course in nano-electronics.