Nanobiotechnology A Multidisciplinary Field Of Science

Download Nanobiotechnology A Multidisciplinary Field Of Science PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Nanobiotechnology A Multidisciplinary Field Of Science book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Nanobiotechnology: A Multidisciplinary Field of Science

The generation of well-defined nanoparticles of excellent size and shape involves physical and chemical methodologies that are complicated, expensive, and produce hazardous toxic waste that is harmful to the environment and to human health. In order to combat the disadvantages of these methods, scientists have created “the biological method,” a new synthetic methodology that serves as a proper alternative to physical and chemical methodologies because of its easy utility, low cost, rapid synthesis, controlled size characteristics, controlled toxicity, and eco-friendliness. Nanobiotechnology is the science in which living matter can be manipulated and exploited to produce materials within the nano-scale. It is a multidisciplinary field of science framed by biology, chemistry, engineering, materials, and life sciences. Different biological entities can be exploited to yield biologically synthesized nanomaterials including bacteria, actinomycetes, yeast, fungi, viruses, algae, plant extracts, and agro-industrial waste extracts. This book represents a comprehensive review concerning the state of the art in nanobiotechnology, emphasizing the use of diverse biological entities in the science, and its versatile applications. It describes currently existing methodology with the latest published references, and provides safety information. It serves as the ideal guide for scientists interested in exploring nanobiotechnology.
Nanotechnology

This book gives a summary of the rapidly growing field of nanotechnology and includes materials and technologies that help in developing particles of various sizes, which can be utilized in different areas of research. It discusses the role of nanotechnology in different aspects, such as healthcare, especially in target-specific drug therapy for managing a number of medical disorders; agriculture, for developing smart field systems; and food industry, for improving and stabilizing the quality, healthiness, and shelf life of food. Being multidisciplinary, this book brings together the principles, theory, practices, and applications of not only nanotechnology but also those of nanobiotechnology, pharmaceuticals, food packaging, biosensors, and electronic devices. The book will be an exhilarating read for advanced undergraduate- and graduate-level students, general readers interested in nanotechnology, and researchers in chemistry, biology, and engineering. The scope of the book extends from basic research in physics, chemistry, and biology, including computational work and simulations, through to the development of new devices and technologies for applications in a wide range of industrial sectors (including information technology, medicine, manufacturing, high-performance materials, and energy and environmental technologies). It covers organic, inorganic, and hybrid materials and is an interdisciplinary book.
Nanobiotechnology

This book covers topics related to drug delivery, biomaterials, drug design, formulation development, nanoscience, and nanotechnology. It describes the fundamental concepts in nanotechnology and their different applications in biotechnology to solve engineering challenges and generate new areas of technological development. Nanobiotechnology: Applications of Nanomaterials in Biotechnology, Medicine, and Healthcare covers vast application areas that include medical science, material science, pharmaceutical science, and environmental science. Section 1 presents recent research updates on the different nanomaterials, which are promising in different medical and biotechnological applications. Applications of nanomaterials as bone replacement orthopedic implants have revolutionized the treatment of orthopedic surgery. Nanostructured polymeric materials have gained immense research attention as therapeutic carriers for the precise delivery of drugs at targeted sites. Nanocellulose is recognized as a promising green nanomaterial due to its renewability and abundance in nature. Scientific topics on the most recent scientific and technological advances and applications of different nanostructured materials are presented in this section. Section 2 focuses on the novel synthesis methods that are used extensively and are promising for large-scale production of inorganic and nanostructured materials. Section 3 covers the applications of nanotools in the treatment of different diseases, including cancers and genetic diseases. The increasing use of nanotechnology will bring changes in the manufacturing processes of nanomaterials. The applications of nanomaterials in the field of medical imaging and molecular detection are presented in section 4. This book will be useful for students, researchers, scientists, academicians, and industrial manufacturers to understand the importance and applicability of nanomaterials in the field of biotechnology and medical science.