Nano Engineering At Functional Interfaces For Multidisciplinary Applications

Download Nano Engineering At Functional Interfaces For Multidisciplinary Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Nano Engineering At Functional Interfaces For Multidisciplinary Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Nano-Engineering at Functional Interfaces for Multidisciplinary Applications

Nano-Engineering at Functional Interfaces for Multi-disciplinary Applications: Electrochemistry, Photoplasmonics, Antimicrobials, and Anticancer Applications provides a comprehensive overview of the fundamentals and latest advances of nano-engineering strategies for the design, development, and fabrication of novel nanostructures for different applications in the fields of photoplasmonics and electrochemistry, as well as antibacterial and anticancer research areas. The book begins with an introduction to the fundamentals and characteristics of nanostructured interfaces and their associated technologies, including an overview of their potential applications in different fields.The following chapters present a thorough discussion of the synthesis, processing, and characterization methods of nanomaterials with unique functionalities suitable for energy harvesting, food and textile applications, electrocatalysis, biomedical applications and more. It then concludes outlining research future directions and potential industrial applications. - Presents the advantages and impact of nano-engineering in technological advances, with up-to-date discussions on their applications - Covers research directions and potential future applications of nano-engineering in industry - Includes case studies that illustrate important processes
Multidisciplinary Applications of AI Robotics and Autonomous Systems

As society transitions into the digital age, the demand for advanced robotics and autonomous systems has remained unchanged. However, the field faces significant challenges bridging the gap between current capabilities and the potential for brilliant, autonomous machines. While exact and efficient, current robotic systems need more sophistication and adaptability of human intelligence. This limitation restricts their application in complex and dynamic environments, hindering their ability to realize their potential fully. Multidisciplinary Applications of AI Robotics and Autonomous Systems addresses these challenges by presenting cutting-edge research and innovative robotics and autonomous systems solutions. By exploring topics such as digital transformation, IoT, AI, and cloud-native computing paradigms, readers will understand the latest advancements in the field. The book delves into theoretical frameworks, computational models, and experimental approaches, offering insights to help researchers and practitioners develop more intelligent and autonomous machines.
Surface Engineering and Functional Nanomaterials for Point-of-Care Analytical Devices

This book chronicles the role of advanced nanomaterials and surface engineering technologies in the development of point-of-care biosensors for health and environmental monitoring. All aspects of nanomaterial synthesis and characterization, functionalization methods, sensing surface engineering, signal amplification strategies, use of innovative technologies to enhance sensor efficiency and performances, and innovative applications of nanobiosensors to tackle real-life problems are discussed in this book with a focus on optical and electrochemical based sensing. It also covers the detection of infectious diseases and various disease biomarkers, smartphone-based biosensing, and portable diagnostics module developments with a discussion on the working mechanisms of these devices in various domains. The book also illustrates the recent trends in biosensing, and an overview of the challenges and probable solutions for the translation of biosensors from laboratory prototypes to commercial success.