Music Similarity And Retrieval


Download Music Similarity And Retrieval PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Music Similarity And Retrieval book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Music Similarity and Retrieval


Music Similarity and Retrieval

Author: Peter Knees

language: en

Publisher: Springer

Release Date: 2016-05-28


DOWNLOAD





This book provides a summary of the manifold audio- and web-based approaches to music information retrieval (MIR) research. In contrast to other books dealing solely with music signal processing, it addresses additional cultural and listener-centric aspects and thus provides a more holistic view. Consequently, the text includes methods operating on features extracted directly from the audio signal, as well as methods operating on features extracted from contextual information, either the cultural context of music as represented on the web or the user and usage context of music. Following the prevalent document-centered paradigm of information retrieval, the book addresses models of music similarity that extract computational features to describe an entity that represents music on any level (e.g., song, album, or artist), and methods to calculate the similarity between them. While this perspective and the representations discussed cannot describe all musical dimensions, they enable us to effectively find music of similar qualities by providing abstract summarizations of musical artifacts from different modalities. The text at hand provides a comprehensive and accessible introduction to the topics of music search, retrieval, and recommendation from an academic perspective. It will not only allow those new to the field to quickly access MIR from an information retrieval point of view but also raise awareness for the developments of the music domain within the greater IR community. In this regard, Part I deals with content-based MIR, in particular the extraction of features from the music signal and similarity calculation for content-based retrieval. Part II subsequently addresses MIR methods that make use of the digitally accessible cultural context of music. Part III addresses methods of collaborative filtering and user-aware and multi-modal retrieval, while Part IV explores current and future applications of music retrieval and recommendation.>

Music Retrieval


Music Retrieval

Author: Nicola Orio

language: en

Publisher: Now Publishers Inc

Release Date: 2006


DOWNLOAD





Music Accessing and Retrieval is the first comprehensive survey of the vast new field of Music Information Retrieval (MIR). It describes a number of issues which are peculiar to the language of music - including forms, formats, and dimensions of music - together with the typologies of users and their information needs. To fulfil these needs a number of approaches are discussed, from direct search to information filtering and clustering of music documents. The emphasis is on tools, techniques, and approaches for content-based MIR, rather than on the systems that implement them. The interested reader can, however, find descriptions of more than 35 systems for music retrieval with links to their Web sites. Music Accessing and Retrieval can be used as both a guide for beginners who are embarking on research in this relatively new area, and a useful reference for established researchers in this field.

Music Data Analysis


Music Data Analysis

Author: Claus Weihs

language: en

Publisher: CRC Press

Release Date: 2016-11-17


DOWNLOAD





This book provides a comprehensive overview of music data analysis, from introductory material to advanced concepts. It covers various applications including transcription and segmentation as well as chord and harmony, instrument and tempo recognition. It also discusses the implementation aspects of music data analysis such as architecture, user interface and hardware. It is ideal for use in university classes with an interest in music data analysis. It also could be used in computer science and statistics as well as musicology.