Multivariate Model Building And Model Identification

Download Multivariate Model Building And Model Identification PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Multivariate Model Building And Model Identification book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Multivariable Model - Building

Multivariable regression models are of fundamental importance in all areas of science in which empirical data must be analyzed. This book proposes a systematic approach to building such models based on standard principles of statistical modeling. The main emphasis is on the fractional polynomial method for modeling the influence of continuous variables in a multivariable context, a topic for which there is no standard approach. Existing options range from very simple step functions to highly complex adaptive methods such as multivariate splines with many knots and penalisation. This new approach, developed in part by the authors over the last decade, is a compromise which promotes interpretable, comprehensible and transportable models.
Multivariable Predictive Control

Author: Sandip K. Lahiri
language: en
Publisher: John Wiley & Sons
Release Date: 2017-10-23
A guide to all practical aspects of building, implementing, managing, and maintaining MPC applications in industrial plants Multivariable Predictive Control: Applications in Industry provides engineers with a thorough understanding of all practical aspects of multivariate predictive control (MPC) applications, as well as expert guidance on how to derive maximum benefit from those systems. Short on theory and long on step-by-step information, it covers everything plant process engineers and control engineers need to know about building, deploying, and managing MPC applications in their companies. MPC has more than proven itself to be one the most important tools for optimising plant operations on an ongoing basis. Companies, worldwide, across a range of industries are successfully using MPC systems to optimise materials and utility consumption, reduce waste, minimise pollution, and maximise production. Unfortunately, due in part to the lack of practical references, plant engineers are often at a loss as to how to manage and maintain MPC systems once the applications have been installed and the consultants and vendors’ reps have left the plant. Written by a chemical engineer with two decades of experience in operations and technical services at petrochemical companies, this book fills that regrettable gap in the professional literature. Provides a cost-benefit analysis of typical MPC projects and reviews commercially available MPC software packages Details software implementation steps, as well as techniques for successfully evaluating and monitoring software performance once it has been installed Features case studies and real-world examples from industries, worldwide, illustrating the advantages and common pitfalls of MPC systems Describes MPC application failures in an array of companies, exposes the root causes of those failures, and offers proven safeguards and corrective measures for avoiding similar failures Multivariable Predictive Control: Applications in Industry is an indispensable resource for plant process engineers and control engineers working in chemical plants, petrochemical companies, and oil refineries in which MPC systems already are operational, or where MPC implementations are being considering.
Dynamic Model Development: Methods, Theory and Applications

Detailed mathematical models are increasingly being used by companies to gain competitive advantage through such applications as model-based process design, control and optimization. Thus, building various types of high quality models for processing systems has become a key activity in Process Engineering. This activity involves the use of several methods and techniques including model solution techniques, nonlinear systems identification, model verification and validation, and optimal design of experiments just to name a few. In turn, several issues and open-ended problems arise within these methods, including, for instance, use of higher-order information in establishing parameter estimates, establishing metrics for model credibility, and extending experiment design to the dynamic situation. The material covered in this book is aimed at allowing easier development and full use of detailed and high fidelity models. Potential applications of these techniques in all engineering disciplines are abundant, including applications in chemical kinetics and reaction mechanism elucidation, polymer reaction engineering, and physical properties estimation. On the academic side, the book will serve to generate research ideas. - Contains wide coverage of statistical methods applied to process modelling - Serves as a recent compilation of dynamic model building tools - Presents several examples of applying advanced statistical and modelling methods to real process systems problems