Multivariable Mathematics With Maple

Download Multivariable Mathematics With Maple PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Multivariable Mathematics With Maple book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Geometry of Curves and Surfaces with MAPLE

Author: Vladimir Rovenski
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-12-01
This concise text on geometry with computer modeling presents some elementary methods for analytical modeling and visualization of curves and surfaces. The author systematically examines such powerful tools as 2-D and 3-D animation of geometric images, transformations, shadows, and colors, and then further studies more complex problems in differential geometry. Well-illustrated with more than 350 figures---reproducible using Maple programs in the book---the work is devoted to three main areas: curves, surfaces, and polyhedra. Pedagogical benefits can be found in the large number of Maple programs, some of which are analogous to C++ programs, including those for splines and fractals. To avoid tedious typing, readers will be able to download many of the programs from the Birkhauser web site. Aimed at a broad audience of students, instructors of mathematics, computer scientists, and engineers who have knowledge of analytical geometry, i.e., method of coordinates, this text will be an excellent classroom resource or self-study reference. With over 100 stimulating exercises, problems and solutions, {\it Geometry of Curves and Surfaces with Maple} will integrate traditional differential and non- Euclidean geometries with more current computer algebra systems in a practical and user-friendly format.
Multivariable Mathematics

Author: Theodore Shifrin
language: en
Publisher: John Wiley & Sons
Release Date: 2004-01-26
Multivariable Mathematics combines linear algebra and multivariable calculus in a rigorous approach. The material is integrated to emphasize the role of linearity in all of calculus and the recurring theme of implicit versus explicit that persists in linear algebra and analysis. In the text, the author addresses all of the standard computational material found in the usual linear algebra and multivariable calculus courses, and more, interweaving the material as effectively as possible and also including complete proofs. By emphasizing the theoretical aspects and reviewing the linear algebra material quickly, the book can also be used as a text for an advanced calculus or multivariable analysis course culminating in a treatment of manifolds, differential forms, and the generalized Stokes’s Theorem.