Multivariable Calculus And Mathematica R

Download Multivariable Calculus And Mathematica R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Multivariable Calculus And Mathematica R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
A Course in Multivariable Calculus and Analysis

Author: Sudhir R. Ghorpade
language: en
Publisher: Springer Science & Business Media
Release Date: 2010-03-20
This self-contained textbook gives a thorough exposition of multivariable calculus. It can be viewed as a sequel to the one-variable calculus text, A Course in Calculus and Real Analysis, published in the same series. The emphasis is on correlating general concepts and results of multivariable calculus with their counterparts in one-variable calculus. For example, when the general definition of the volume of a solid is given using triple integrals, the authors explain why the shell and washer methods of one-variable calculus for computing the volume of a solid of revolution must give the same answer. Further, the book includes genuine analogues of basic results in one-variable calculus, such as the mean value theorem and the fundamental theorem of calculus. This book is distinguished from others on the subject: it examines topics not typically covered, such as monotonicity, bimonotonicity, and convexity, together with their relation to partial differentiation, cubature rules for approximate evaluation of double integrals, and conditional as well as unconditional convergence of double series and improper double integrals. Moreover, the emphasis is on a geometric approach to such basic notions as local extremum and saddle point. Each chapter contains detailed proofs of relevant results, along with numerous examples and a wide collection of exercises of varying degrees of difficulty, making the book useful to undergraduate and graduate students alike. There is also an informative section of "Notes and Comments’’ indicating some novel features of the treatment of topics in that chapter as well as references to relevant literature. The only prerequisite for this text is a course in one-variable calculus.
Multivariable Mathematics

Author: Theodore Shifrin
language: en
Publisher: John Wiley & Sons
Release Date: 2004-01-26
Multivariable Mathematics combines linear algebra and multivariable calculus in a rigorous approach. The material is integrated to emphasize the role of linearity in all of calculus and the recurring theme of implicit versus explicit that persists in linear algebra and analysis. In the text, the author addresses all of the standard computational material found in the usual linear algebra and multivariable calculus courses, and more, interweaving the material as effectively as possible and also including complete proofs. By emphasizing the theoretical aspects and reviewing the linear algebra material quickly, the book can also be used as a text for an advanced calculus or multivariable analysis course culminating in a treatment of manifolds, differential forms, and the generalized Stokes’s Theorem.
Multivariable Calculus, Linear Algebra, and Differential Equations

Author: Stanley I. Grossman
language: en
Publisher: Academic Press
Release Date: 2014-05-10
Multivariable Calculus, Linear Algebra, and Differential Equations, Second Edition contains a comprehensive coverage of the study of advanced calculus, linear algebra, and differential equations for sophomore college students. The text includes a large number of examples, exercises, cases, and applications for students to learn calculus well. Also included is the history and development of calculus. The book is divided into five parts. The first part includes multivariable calculus material. The second part is an introduction to linear algebra. The third part of the book combines techniques from calculus and linear algebra and contains discussions of some of the most elegant results in calculus including Taylor's theorem in "n" variables, the multivariable mean value theorem, and the implicit function theorem. The fourth section contains detailed discussions of first-order and linear second-order equations. Also included are optional discussions of electric circuits and vibratory motion. The final section discusses Taylor's theorem, sequences, and series. The book is intended for sophomore college students of advanced calculus.