Multiscale Theory Of Composites And Random Media

Download Multiscale Theory Of Composites And Random Media PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Multiscale Theory Of Composites And Random Media book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Multiscale Theory of Composites and Random Media

This is the first book to introduce Green-function-based multiscale theory and the corresponding finite element method, which are readily applicable to composites and random media. The methodology is considered to be the one that most effectively tackles the uncertainty of stress propagation in complex heterogeneities of random media, and which presents multiscale theory from distinctive scale separation and scale-coupling viewpoints. Deliberately taking a multiscale perspective, it covers scale separation and then scale coupling. Both micromechanics and novel scale-coupling mechanics are described in relation to variational principles and bounds, as well as in the emerging topics on percolation and scale-coupling computation. It gives detail on the different bounds encountered, covering classical second and third order, new fourth order, and innovative ellipsoidal variations. Green-function-based multiscale theory is addressed to applications in solid mechanics and transport of complex media ranging from micro- and nano-composites, polycrystals, soils, rocks, cementitious materials, to biological materials. It is useful as a graduate textbook in civil and mechanical engineering and as a reference.
Multiscale Theory of Composites and Random Media

This is the first book to introduce Green-function-based multiscale theory and the corresponding finite element method, which are readily applicable to composites and random media. The methodology is considered to be the one that most effectively tackles the uncertainty of stress propagation in complex heterogeneities of random media, and which presents multiscale theory from distinctive scale separation and scale-coupling viewpoints. Deliberately taking a multiscale perspective, it covers scale separation and then scale coupling. Both micromechanics and novel scale-coupling mechanics are described in relation to variational principles and bounds, as well as in the emerging topics on percolation and scale-coupling computation. It gives detail on the different bounds encountered, covering classical second and third order, new fourth order, and innovative ellipsoidal variations. Green-function-based multiscale theory is addressed to applications in solid mechanics and transport of complex media ranging from micro- and nano-composites, polycrystals, soils, rocks, cementitious materials, to biological materials. It is useful as a graduate textbook in civil and mechanical engineering and as a reference.
The Theory of Composites

Composites have been studied for more than 150 years, and interest in their properties has been growing. This classic volume provides the foundations for understanding a broad range of composite properties, including electrical, magnetic, electromagnetic, elastic and viscoelastic, piezoelectric, thermal, fluid flow through porous materials, thermoelectric, pyroelectric, magnetoelectric, and conduction in the presence of a magnetic field (Hall effect). Exact solutions of the PDEs in model geometries provide one avenue of understanding composites; other avenues include microstructure-independent exact relations satisfied by effective moduli, for which the general theory is reviewed; approximation formulae for effective moduli; and series expansions for the fields and effective moduli that are the basis of numerical methods for computing these fields and moduli. The range of properties that composites can exhibit can be explored either through the model geometries or through microstructure-independent bounds on the properties. These bounds are obtained through variational principles, analytic methods, and Hilbert space approaches. Most interesting is when the properties of the composite are unlike those of the constituent materials, and there has been an explosion of interest in such composites, now known as metamaterials. The Theory of Composites surveys these aspects, among others, and complements the new body of literature that has emerged since the book was written. It remains relevant today by providing historical background, a compendium of numerous results, and through elucidating many of the tools still used today in the analysis of composite properties. This book is intended for applied mathematicians, physicists, and electrical and mechanical engineers. It will also be of interest to graduate students.