Multiplication Objects In Monoidal Categories

Download Multiplication Objects In Monoidal Categories PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Multiplication Objects In Monoidal Categories book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Multiplication Objects in Monoidal Categories

The main aim of this book is to study the concept of multiplication objects from a categorical point of view, namely, in the setting of monoidal categories which are responsible for the narrow relationship between quantum groups and knot theory. At the same time, the book brings together the literature on multiplication modules and rings, which has been scattered to date. This book organises and exposes them in a categorical framework by using functorial techniques. Multiplication modules and rings are framed inside commutative algebra, which is a basis for number theory and algebraic geometry. These include families of rings very important in ideal arithmetic such as regular von Neumann rings, Dedekind domains, hereditary rings or special primary rings. In the relative case, i.e., multiplication modules and rings with respect to a hereditary torsion theory, the most significant example is that of Krull domains (with respect to the classical torsion theory). As a consequence, we have an adequate setting to consider divisorial properties. As for the graded concept, it is possible to examine deep in the study of arithmetically graded rings such as generalized Rees rings, graded Dedekind domains, twisted group rings, etc. The book points out some different possibilities to deal with the topic, for example, semiring theory, lattice theory, comodule theory, etc.
Monoidal Category Theory

A comprehensive, cutting-edge, and highly readable textbook that makes category theory and monoidal category theory accessible to students across the sciences. Category theory is a powerful framework that began in mathematics but has since expanded to encompass several areas of computing and science, with broad applications in many fields. In this comprehensive text, Noson Yanofsky makes category theory accessible to those without a background in advanced mathematics. Monoidal Category Theorydemonstrates the expansive uses of categories, and in particular monoidal categories, throughout the sciences. The textbook starts from the basics of category theory and progresses to cutting edge research. Each idea is defined in simple terms and then brought alive by many real-world examples before progressing to theorems and uncomplicated proofs. Richly guided exercises ground readers in concrete computation and application. The result is a highly readable and engaging textbook that will open the world of category theory to many. Makes category theory accessible to non-math majors Uses easy-to-understand language and emphasizes diagrams over equations Incremental, iterative approach eases students into advanced concepts A series of embedded mini-courses cover such popular topics as quantum computing, categorical logic, self-referential paradoxes, databases and scheduling, and knot theory Extensive exercises and examples demonstrate the broad range of applications of categorical structures Modular structure allows instructors to fit text to the needs of different courses Instructor resources include slides
Bimonoidal Categories, $E_n$-Monoidal Categories, and Algebraic $K$-Theory

Author: Donald Yau
language: en
Publisher: American Mathematical Society
Release Date: 2024-10-08
Bimonoidal categories are categorical analogues of rings without additive inverses. They have been actively studied in category theory, homotopy theory, and algebraic $K$-theory since around 1970. There is an abundance of new applications and questions of bimonoidal categories in mathematics and other sciences. The three books published by the AMS in the Mathematical Surveys and Monographs series under the general title Bimonoidal Categories, $E_n$-Monoidal Categories, and Algebraic $K$-Theory (Volume I: Symmetric Bimonoidal Categories and Monoidal Bicategories?this book, Volume II: Braided Bimonoidal Categories with Applications, and Volume III: From Categories to Structured Ring Spectra) provide a unified treatment of bimonoidal and higher ring-like categories, their connection with algebraic $K$-theory and homotopy theory, and applications to quantum groups and topological quantum computation. With ample background material, extensive coverage, detailed presentation of both well-known and new theorems, and a list of open questions, this work is a user-friendly resource for beginners and experts alike. Part 1 of this book proves in detail Laplaza's two coherence theorems and May's strictification theorem of symmetric bimonoidal categories, as well as their bimonoidal analogues. This part includes detailed corrections to several inaccurate statements and proofs found in the literature. Part 2 proves Baez's Conjecture on the existence of a bi-initial object in a 2-category of symmetric bimonoidal categories. The next main theorem states that a matrix construction, involving the matrix product and the matrix tensor product, sends a symmetric bimonoidal category with invertible distributivity morphisms to a symmetric monoidal bicategory, with no strict structure morphisms in general.