Multimodal Biometric Authentication Deep Learning Approach


Download Multimodal Biometric Authentication Deep Learning Approach PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Multimodal Biometric Authentication Deep Learning Approach book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Biometric Authentication


Biometric Authentication

Author: Sun Yuan Kung

language: en

Publisher: Prentice Hall

Release Date: 2005


DOWNLOAD





A breakthrough approach to improving biometrics performanceConstructing robust information processing systems for face and voice recognitionSupporting high-performance data fusion in multimodal systemsAlgorithms, implementation techniques, and application examples Machine learning: driving significant improvements in biometric performance As they improve, biometric authentication systems are becoming increasingly indispensable for protecting life and property. This book introduces powerful machine learning techniques that significantly improve biometric performance in a broad spectrum of application domains. Three leading researchers bridge the gap between research, design, and deployment, introducing key algorithms as well as practical implementation techniques. They demonstrate how to construct robust information processing systems for biometric authentication in both face and voice recognition systems, and to support data fusion in multimodal systems. Coverage includes: How machine learning approaches differ from conventional template matchingTheoretical pillars of machine learning for complex pattern recognition and classificationExpectation-maximization (EM) algorithms and support vector machines (SVM)Multi-layer learning models and back-propagation (BP) algorithmsProbabilistic decision-based neural networks (PDNNs) for face biometricsFlexible structural frameworks for incorporating machine learning subsystems in biometric applicationsHierarchical mixture of experts and inter-class learning strategies based on class-based modular networksMulti-cue data fusion techniques that integrate face and voice recognitionApplication case studies

Multimodal Biometric and Machine Learning Technologies


Multimodal Biometric and Machine Learning Technologies

Author: Sandeep Kumar

language: en

Publisher: John Wiley & Sons

Release Date: 2023-11-15


DOWNLOAD





MULTIMODAL BIOMETRIC AND MACHINE LEARNING TECHNOLOGIES With an increasing demand for biometric systems in various industries, this book on multimodal biometric systems, answers the call for increased resources to help researchers, developers, and practitioners. Multimodal biometric and machine learning technologies have revolutionized the field of security and authentication. These technologies utilize multiple sources of information, such as facial recognition, voice recognition, and fingerprint scanning, to verify an individual's identity. The need for enhanced security and authentication has become increasingly important, and with the rise of digital technologies, cyber-attacks and identity theft have increased exponentially. Traditional authentication methods, such as passwords and PINs, have become less secure as hackers devise new ways to bypass them. In this context, multimodal biometric and machine learning technologies offer a more secure and reliable approach to authentication. This book provides relevant information on multimodal biometric and machine learning technologies and focuses on how humans and computers interact to ever-increasing levels of complexity and simplicity. The book provides content on the theory of multimodal biometric design, evaluation, and user diversity, and explains the underlying causes of the social and organizational problems that are typically devoted to descriptions of rehabilitation methods for specific processes. Furthermore, the book describes new algorithms for modeling accessible to scientists of all varieties. Audience Researchers in computer science and biometrics, developers who are designing and implementing biometric systems, and practitioners who are using biometric systems in their work, such as law enforcement personnel or healthcare professionals.

Biometric Systems


Biometric Systems

Author: James L. Wayman

language: en

Publisher: Springer Science & Business Media

Release Date: 2005-09-20


DOWNLOAD





Biometric Systems provides practitioners with an overview of the principles and methods needed to build reliable biometric systems. It covers three main topics: key biometric technologies, design and management issues, and the performance evaluation of biometric systems for personal verification/identification. The four most widely used technologies are focused on - speech, fingerprint, iris and face recognition. Key features include: in-depth coverage of the technical and practical obstacles which are often neglected by application developers and system integrators and which result in shortfalls between expected and actual performance; and protocols and benchmarks which will allow developers to compare performance and track system improvements.