Multilevel Adaptive Methods For Partial Differential Equations

Download Multilevel Adaptive Methods For Partial Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Multilevel Adaptive Methods For Partial Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Multilevel Adaptive Methods for Partial Differential Equations

A practical handbook for understanding and using fast adaptive composite grid (FAC) methods for discretization and solution of partial differential equations (PDEs). Contains fundamental concepts. These so-called FAC are characterized by their use of a composite grid, which is nominally the union of various uniform grids. FAC is capable of producing a composite grid with tailored resolution, and a corresponding solution with commensurate accuracy, at a cost proportional to the number of composite grid points. Moreover, special asynchronous versions of the fast adaptive composite grid methods (AFAC) studied here have seemingly optimal complexity in a parallel computing environment. Most of the methods treated in this book were discovered only within the last decade, and in many cases their development is still in its infancy. While this is not meant to be comprehensive, it does provide a theoretical and practical guide to multilevel adaptive methods and relevant discretization techniques.
Adaptive Methods for Partial Differential Equations

"Proceedings of the Workshop on Adaptive Computational Methods for Partial Differential Equations, Rensselaer Polytechnic Institute, October 13-15, 1988"--T.p. verso.
Multilevel Projection Methods for Partial Differential Equations

The multilevel projection method is a new formalism that provides a framework for the development of multilevel algorithms in a very general setting. This methodology guides the choices of all the major multilevel processes, including relaxation and coarsening, and it applies directly to global or locally-refined discretizations. This book was developed from lectures at the CBMS-NSF Regional Conference on Multigrid and Multilevel Adaptive Methods for Partial Differential Equations in June 1991, and is a supplement to Multilevel Adaptive Methods for Partial Differential Equations, also written by Stephen F. McCormick.