Multichip Module Technologies And Alternatives The Basics


Download Multichip Module Technologies And Alternatives The Basics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Multichip Module Technologies And Alternatives The Basics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Multichip Module Technologies and Alternatives: The Basics


Multichip Module Technologies and Alternatives: The Basics

Author: Daryl Ann Doane

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-11-27


DOWNLOAD





Far from being the passive containers for semiconductor devices of the past, the packages in today's high performance computers pose numerous challenges in interconnecting, powering, cooling and protecting devices. While semiconductor circuit performance measured in picoseconds continues to improve, computer performance is expected to be in nanoseconds for the rest of this century -a factor of 1000 difference between on-chip and off-chip performance which is attributable to losses associated with the package. Thus the package, which interconnects all the chips to form a particular function such as a central processor, is likely to set the limits on how far computers can evolve. Multichip packaging, which can relax these limits and also improve the reliability and cost at the systems level, is expected to be the basis of all advanced computers in the future. In addition, since this technology allows chips to be spaced more closely, in less space and with less weight, it has the added advantage of being useful in portable consumer electronics as well as in medical, aerospace, automotive and telecommunications products. The multichip technologies with which these applications can be addressed are many. They range from ceramics to polymer-metal thin films to printed wiring boards for interconnections; flip chip, TAB or wire bond for chip-to-substrate connections; and air or water cooling for the removal of heat.

Multichip Module Technologies and Alternatives: The Basics


Multichip Module Technologies and Alternatives: The Basics

Author: Daryl Ann Doane

language: en

Publisher: Springer Science & Business Media

Release Date: 1992-10-31


DOWNLOAD





Far from being the passive containers for semiconductor devices of the past, the packages in today's high performance computers pose numerous challenges in interconnecting, powering, cooling and protecting devices. While semiconductor circuit performance measured in picoseconds continues to improve, computer performance is expected to be in nanoseconds for the rest of this century -a factor of 1000 difference between on-chip and off-chip performance which is attributable to losses associated with the package. Thus the package, which interconnects all the chips to form a particular function such as a central processor, is likely to set the limits on how far computers can evolve. Multichip packaging, which can relax these limits and also improve the reliability and cost at the systems level, is expected to be the basis of all advanced computers in the future. In addition, since this technology allows chips to be spaced more closely, in less space and with less weight, it has the added advantage of being useful in portable consumer electronics as well as in medical, aerospace, automotive and telecommunications products. The multichip technologies with which these applications can be addressed are many. They range from ceramics to polymer-metal thin films to printed wiring boards for interconnections; flip chip, TAB or wire bond for chip-to-substrate connections; and air or water cooling for the removal of heat.

Air Cooling Technology for Electronic Equipment


Air Cooling Technology for Electronic Equipment

Author: Sung Jin Kim

language: en

Publisher: CRC Press

Release Date: 2020-07-24


DOWNLOAD





Clear your bookcase of references containing bits and pieces of useful information and replace them with this thorough, single-volume guide to thermal analysis. Air Cooling Technology for Electronic Equipment is a helpful, practical resource that answers questions frequently asked by thermal and packaging engineers grappling with today's demand for increased thermal control in electronics. Superbly organized for quick reference, the book dedicates each chapter to answering fundamental questions, such as: What is the optimal spacing between the printed circuit boards? What is a good estimate of the heat transfer coefficient and the associate pressure drop for forced convection over package arrays? How are heat transfer and fluid flow characteristics in the entrance region different from those in the fully developed region? What is the effect of substrate conduction on convection cooling? The chapters, written by engineers and engineering educators who are experts in electronic cooling, are packed with details and present the latest developments in air cooling techniques and thermal design guidelines. They provide problem-solving analyses that are jargon-free, straightforward, and easy to understand. Air Cooling Technology for Electronic Equipment is a handy source of technical information for anyone who wants to get the most out of air cooling.