Multi Scale Understanding Of Vegetation Ecosystems

Download Multi Scale Understanding Of Vegetation Ecosystems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Multi Scale Understanding Of Vegetation Ecosystems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Multi-scale Understanding of Vegetation Ecosystems

This book highlights the vital role of vegetation in terrestrial surface systems, emphasizing its importance in regulating climate change, acting as a carbon sink, and maintaining the surface energy balance by absorbing CO2 from human activities. However, urbanization, extreme droughts, floods, fires, and other events negatively impact biodiversity, increase tree mortality, trigger wildfires, and exacerbate food insecurity and poverty. Understanding the influence of global climate change and human activity on vegetation patterns is essential. The structure and function of vegetation ecosystems result from interactions between natural ecological processes and socio-cultural factors, leading to variability across different spatial and temporal scales. While local-scale studies provide detailed insights, they are often difficult to generalize. Conversely, large-scale studies can inform comprehensive planning but may overlook nuances between subsystems. Therefore, enhancing research on the evolution of vegetation ecosystems and their responses to climate change across multiple scales is crucial to mitigate risks and maintain ecosystem balance. Extensive studies have explored the spatiotemporal dynamics and driving forces on large-scale vegetation structure, productivity, and resilience, especially on a global scale. However, there is limited research on vegetation characteristics in specific geological conditions and geomorphic regions, particularly in karst regions. Karst landforms account for 15% of the global vegetated land and are vital for global carbon and water cycles, as well as biodiversity conservation. Southwest China, the largest contiguous karst region, represents 0.36% of the vegetated land but contributes 5% of global aboveground biomass, making it a key carbon sink. However, its fragile ecological conditions, frequent extreme climate events, and unsustainable human activities have led to significant vegetation degradation and desertification, resulting in severe environmental damage in recent decades. To address these issues, ecological restoration measures have been launched since the early 2000s to boost vegetation.
Multi-Scale Biogeochemical Processes in Soil Ecosystems

MULTI-SCALE BIOGEOCHEMICAL PROCESSES IN SOIL ECOSYSTEMS Provides a state-of-the-art overview of research in soil biogeochemical processes and strategies for greenhouse gas mitigation under climate change Food security and soil health for the rapidly growing human population are threatened by increased temperature and drought, soil erosion and soil quality degradation, and other problems caused by human activities and a changing climate. Because greenhouse gas emission is the primary driver of climate change, a complete understanding of the cycles of carbon and major nutritional elements is critical for developing innovative strategies to sustain agricultural development and environmental conservation. Multi-Scale Biogeochemical Processes in Soil Ecosystems: Critical Reactions and Resilience to Climate Changes is an up-to-date overview of recent research in soil biogeochemical processes and applications in ecosystem management. Organized into three parts, the text examines molecular-scale processes and critical reactions, presents ecosystem-scale studies of ecological hotspots, and discusses large-scale modeling and prediction of global biogeochemical cycles. Part of the Wiley - IUPAC Series on Biophysico-Chemical Processes in Environmental Systems, this authoritative volume: Provides readers with a systematic and interdisciplinary approach to sustainable agricultural development and management of soil ecosystems in a changing climate Features contributions from an international team of leading scientists Examines topics such as soil organic matter stabilization, soil biogeochemistry modeling, and soil responses to environmental changes Discusses strategies for mitigating greenhouse gas emission and improving soil health and ecosystems resilience Includes an introduction to working across scales to project soil biogeochemical responses to climatic change Multi-Scale Biogeochemical Processes in Soil Ecosystems: Critical Reactions and Resilience to Climate Changes is essential reading for scientists, engineers, agronomists, chemists, biologists, academic researchers, consultants, and other professionals whose work involves the nutrient cycle, ecosystem management, and climate change.