Multi Objective Multi Class And Multi Label Data Classification With Class Imbalance

Download Multi Objective Multi Class And Multi Label Data Classification With Class Imbalance PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Multi Objective Multi Class And Multi Label Data Classification With Class Imbalance book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Multi-objective, Multi-class and Multi-label Data Classification with Class Imbalance

Author: Sanjay Chakraborty
language: en
Publisher: Springer Nature
Release Date: 2024-12-22
This book explores intricate world of data classification with 'Multi-Objective, Multi-Class, and Multi-Label Data Classification.' This book studies sophisticated methods and strategies for working with complicated data sets, tackling the difficulties of various classes, many objectives, and complicated labelling tasks. This resource fosters a deeper grasp of multi-dimensional data analysis in today's data-driven world by providing readers with the skills and insights needed to navigate the subtleties of modern classification jobs, from algorithmic techniques to practical applications.
Genetic Fuzzy Systems: Evolutionary Tuning And Learning Of Fuzzy Knowledge Bases

In recent years, a great number of publications have explored the use of genetic algorithms as a tool for designing fuzzy systems. Genetic Fuzzy Systems explores and discusses this symbiosis of evolutionary computation and fuzzy logic. The book summarizes and analyzes the novel field of genetic fuzzy systems, paying special attention to genetic algorithms that adapt and learn the knowledge base of a fuzzy-rule-based system. It introduces the general concepts, foundations and design principles of genetic fuzzy systems and covers the topic of genetic tuning of fuzzy systems. It also introduces the three fundamental approaches to genetic learning processes in fuzzy systems: the Michigan, Pittsburgh and Iterative-learning methods. Finally, it explores hybrid genetic fuzzy systems such as genetic fuzzy clustering or genetic neuro-fuzzy systems and describes a number of applications from different areas.Genetic Fuzzy System represents a comprehensive treatise on the design of the fuzzy-rule-based systems using genetic algorithms, both from a theoretical and a practical perspective. It is a valuable compendium for scientists and engineers concerned with research and applications in the domain of fuzzy systems and genetic algorithms.
Machine Learning and Knowledge Discovery in Databases: Research Track

The multi-volume set LNAI 14169 until 14175 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2023, which took place in Turin, Italy, in September 2023. The 196 papers were selected from the 829 submissions for the Research Track, and 58 papers were selected from the 239 submissions for the Applied Data Science Track. The volumes are organized in topical sections as follows: Part I: Active Learning; Adversarial Machine Learning; Anomaly Detection; Applications; Bayesian Methods; Causality; Clustering. Part II: Computer Vision; Deep Learning; Fairness; Federated Learning; Few-shot learning; Generative Models; Graph Contrastive Learning. Part III: Graph Neural Networks; Graphs; Interpretability; Knowledge Graphs; Large-scale Learning. Part IV: Natural Language Processing; Neuro/Symbolic Learning; Optimization; Recommender Systems; Reinforcement Learning; Representation Learning. Part V: Robustness; Time Series; Transfer and Multitask Learning. Part VI: Applied Machine Learning; Computational Social Sciences; Finance; Hardware and Systems; Healthcare & Bioinformatics; Human-Computer Interaction; Recommendation and Information Retrieval. Part VII: Sustainability, Climate, and Environment.- Transportation & Urban Planning.- Demo.