Multi Level Simulation For Vlsi Design

Download Multi Level Simulation For Vlsi Design PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Multi Level Simulation For Vlsi Design book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Multi-Level Simulation for VLSI Design

Author: D.D. Hill
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
AND BACKGROUND 1. 1 CAD, Specification and Simulation Computer Aided Design (CAD) is today a widely used expression referring to the study of ways in which computers can be used to expedite the design process. This can include the design of physical systems, architectural environments, manufacturing processes, and many other areas. This book concentrates on one area of CAD: the design of computer systems. Within this area, it focusses on just two aspects of computer design, the specification and the simulation of digital systems. VLSI design requires support in many other CAD areas, induding automatic layout. IC fabrication analysis, test generation, and others. The problem of specification is unique, however, in that it i!> often the first one encountered in large chip designs, and one that is unlikely ever to be completely automated. This is true because until a design's objectives are specified in a machine-readable form, there is no way for other CAD tools to verify that the target system meets them. And unless the specifications can be simulated, it is unlikely that designers will have confidence in them, since specifications are potentially erroneous themselves. (In this context the term target system refers to the hardware and/or software that will ultimately be fabricated. ) On the other hand, since the functionality of a VLSI chip is ultimately determined by its layout geometry, one might question the need for CAD tools that work with areas other than layout.
Handbook of VLSI Chip Design and Expert Systems

Handbook of VLSI Chip Design and Expert Systems provides information pertinent to the fundamental aspects of expert systems, which provides a knowledge-based approach to problem solving. This book discusses the use of expert systems in every possible subtask of VLSI chip design as well as in the interrelations between the subtasks. Organized into nine chapters, this book begins with an overview of design automation, which can be identified as Computer-Aided Design of Circuits and Systems (CADCAS). This text then presents the progress in artificial intelligence, with emphasis on expert systems. Other chapters consider the impact of design automation, which exploits the basic capabilities of computers to perform complex calculations and to handle huge amounts of data with a high speed and accuracy. This book discusses as well the characterization of microprocessors. The final chapter deals with interactive I/O devices. This book is a valuable resource for system design experts, circuit analysts and designers, logic designers, device engineers, technologists, and application-specific designers.
Hierarchical Modeling for VLSI Circuit Testing

Author: Debashis Bhattacharya
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
Test generation is one of the most difficult tasks facing the designer of complex VLSI-based digital systems. Much of this difficulty is attributable to the almost universal use in testing of low, gate-level circuit and fault models that predate integrated circuit technology. It is long been recognized that the testing prob lem can be alleviated by the use of higher-level methods in which multigate modules or cells are the primitive components in test generation; however, the development of such methods has proceeded very slowly. To be acceptable, high-level approaches should be applicable to most types of digital circuits, and should provide fault coverage comparable to that of traditional, low-level methods. The fault coverage problem has, perhaps, been the most intractable, due to continued reliance in the testing industry on the single stuck-line (SSL) fault model, which is tightly bound to the gate level of abstraction. This monograph presents a novel approach to solving the foregoing problem. It is based on the systematic use of multibit vectors rather than single bits to represent logic signals, including fault signals. A circuit is viewed as a collection of high-level components such as adders, multiplexers, and registers, interconnected by n-bit buses. To match this high-level circuit model, we introduce a high-level bus fault that, in effect, replaces a large number of SSL faults and allows them to be tested in parallel. However, by reducing the bus size from n to one, we can obtain the traditional gate-level circuit and models.