Most Advanced Python Concepts

Download Most Advanced Python Concepts PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Most Advanced Python Concepts book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Advanced Python Programming

Author: Dr. Gabriele Lanaro
language: en
Publisher: Packt Publishing Ltd
Release Date: 2019-02-28
Create distributed applications with clever design patterns to solve complex problems Key FeaturesSet up and run distributed algorithms on a cluster using Dask and PySparkMaster skills to accurately implement concurrency in your codeGain practical experience of Python design patterns with real-world examplesBook Description This Learning Path shows you how to leverage the power of both native and third-party Python libraries for building robust and responsive applications. You will learn about profilers and reactive programming, concurrency and parallelism, as well as tools for making your apps quick and efficient. You will discover how to write code for parallel architectures using TensorFlow and Theano, and use a cluster of computers for large-scale computations using technologies such as Dask and PySpark. With the knowledge of how Python design patterns work, you will be able to clone objects, secure interfaces, dynamically choose algorithms, and accomplish much more in high performance computing. By the end of this Learning Path, you will have the skills and confidence to build engaging models that quickly offer efficient solutions to your problems. This Learning Path includes content from the following Packt products: Python High Performance - Second Edition by Gabriele LanaroMastering Concurrency in Python by Quan NguyenMastering Python Design Patterns by Sakis KasampalisWhat you will learnUse NumPy and pandas to import and manipulate datasetsAchieve native performance with Cython and NumbaWrite asynchronous code using asyncio and RxPyDesign highly scalable programs with application scaffoldingExplore abstract methods to maintain data consistencyClone objects using the prototype patternUse the adapter pattern to make incompatible interfaces compatibleEmploy the strategy pattern to dynamically choose an algorithmWho this book is for This Learning Path is specially designed for Python developers who want to build high-performance applications and learn about single core and multi-core programming, distributed concurrency, and Python design patterns. Some experience with Python programming language will help you get the most out of this Learning Path.
Learning Advanced Python by Studying Open Source Projects

This book is one of its own kind. It is not an encyclopedia or a hands-on tutorial that traps readers in the tutorial hell. It is a distillation of just one common Python user’s learning experience. The experience is packaged with exceptional teaching techniques, careful dependence unraveling and, most importantly, passion. Learning Advanced Python by Studying Open Source Projects helps readers overcome the difficulty in their day-to-day tasks and seek insights from solutions in famous open source projects. Different from a technical manual, this book mixes the technical knowledge, real-world applications and more theoretical content, providing readers with a practical and engaging approach to learning Python. Throughout this book, readers will learn how to write Python code that is efficient, readable and maintainable, covering key topics such as data structures, algorithms, object-oriented programming and more. The author’s passion for Python shines through in this book, making it an enjoyable and inspiring read for both beginners and experienced programmers.
An Introduction to Python Programming for Scientists and Engineers

Author: Johnny Wei-Bing Lin
language: en
Publisher: Cambridge University Press
Release Date: 2022-07-07
Textbook that uses examples and Jupyter notebooks from across the sciences and engineering to teach Python programming.