Modified Gravity


Download Modified Gravity PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Modified Gravity book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Introduction to Modified Gravity


Introduction to Modified Gravity

Author: Albert Petrov

language: en

Publisher: Springer Nature

Release Date: 2023-11-16


DOWNLOAD





This book reviews various modified gravity models, including those with modifications in the pure gravitational sector; those involving extra fields, that is, scalar-tensor and vector-tensor gravity theories; gravity models with Lorentz symmetry breaking; and nonlocal gravity models. The authors discuss both classical and quantum aspects of these theories. The book is unique in bringing together all the current alternatives to Einstein gravity in one source and serves as an excellent starting point for graduate students and other newcomers seeking an overview. This second edition has been expanded with new results from a variety of approaches including f(R,Q,P) gravity, galileon gravity and massive gravity. Extended discussions of Lorentz-breaking terms and of non-local field theory have been added and a completely new chapter is devoted to models based on non-Riemannian geometry.

Modified Gravity and Cosmology


Modified Gravity and Cosmology

Author: Emmanuel N. Saridakis

language: en

Publisher: Springer Nature

Release Date: 2021-12-10


DOWNLOAD





With a focus on modified gravity this book presents a review of the recent developments in the fields of gravity and cosmology, presenting the state of the art, high-lighting the open problems, and outlining the directions of future research. General Relativity and the ΛCDM framework are currently the standard lore and constitute the concordance paradigm of cosmology. Nevertheless, long-standing open theoretical issues, as well as possible new observational ones arising from the explosive development of cosmology in the last two decades, offer the motivation and lead a large amount of research to be devoted in constructing various extensions and modifications. In this review all extended theories and scenarios are first examined under the light of theoretical consistency, and are then applied in various geometrical backgrounds, such as the cosmological and the spherical symmetric ones. Their predictions at both the background and perturbation levels, and concerning cosmology at early, intermediate and late times, are then confronted with the huge amount of observational data that astrophysics and cosmology has been able to offer in the last two decades. Theories, scenarios and models that successfully and efficiently pass the above steps are classified as viable and are candidates for the description of Nature, allowing readers to get a clear overview of the state of the art and where the field of modified gravity is likely to go. This work was performed in the framework of the COST European Action “Cosmology and Astrophysics Network for Theoretical Advances and Training Actions” - CANTATA.

Structure Formation in Modified Gravity Cosmologies


Structure Formation in Modified Gravity Cosmologies

Author: Alexandre Barreira

language: en

Publisher: Springer

Release Date: 2016-05-03


DOWNLOAD





This unique thesis covers all aspects of theories of gravity beyond Einstein’s General Relativity, from setting up the equations that describe the evolution of perturbations, to determining the best-fitting parameters using constraints like the microwave background radiation, and ultimately to the later stages of structure formation using state-of-the-art N-body simulations and comparing them to observations of galaxies, clusters and other large-scale structures. This truly ground-breaking work puts the study of modified gravity models on the same footing as the standard model of cosmology. Since the discovery of the accelerating expansion of the Universe, marked by the awarding of the 2011 Nobel Prize in Physics, there has been a growing interest in understanding what drives that acceleration. One possible explanation lies in theories of gravity beyond Einstein’s General Relativity. This thesis addresses all aspects of the problem, an approach that is crucial to avoiding potentially catastrophic biases in the interpretation of upcoming observational missions.