Modern Nonconvex Nondifferentiable Optimization

Download Modern Nonconvex Nondifferentiable Optimization PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Modern Nonconvex Nondifferentiable Optimization book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Modern Nonconvex Nondifferentiable Optimization

Starting with the fundamentals of classical smooth optimization and building on established convex programming techniques, this research monograph presents a foundation and methodology for modern nonconvex nondifferentiable optimization. It provides readers with theory, methods, and applications of nonconvex and nondifferentiable optimization in statistical estimation, operations research, machine learning, and decision making. A comprehensive and rigorous treatment of this emergent mathematical topic is urgently needed in today’s complex world of big data and machine learning. This book takes a thorough approach to the subject and includes examples and exercises to enrich the main themes, making it suitable for classroom instruction. Modern Nonconvex Nondifferentiable Optimization is intended for applied and computational mathematicians, optimizers, operations researchers, statisticians, computer scientists, engineers, economists, and machine learners. It could be used in advanced courses on optimization/operations research and nonconvex and nonsmooth optimization.
Evaluation Complexity of Algorithms for Nonconvex Optimization

A popular way to assess the “effort” needed to solve a problem is to count how many evaluations of the problem functions (and their derivatives) are required. In many cases, this is often the dominating computational cost. Given an optimization problem satisfying reasonable assumptions—and given access to problem-function values and derivatives of various degrees—how many evaluations might be required to approximately solve the problem? Evaluation Complexity of Algorithms for Nonconvex Optimization: Theory, Computation, and Perspectives addresses this question for nonconvex optimization problems, those that may have local minimizers and appear most often in practice. This is the first book on complexity to cover topics such as composite and constrained optimization, derivative-free optimization, subproblem solution, and optimal (lower and sharpness) bounds for nonconvex problems. It is also the first to address the disadvantages of traditional optimality measures and propose useful surrogates leading to algorithms that compute approximate high-order critical points, and to compare traditional and new methods, highlighting the advantages of the latter from a complexity point of view. This is the go-to book for those interested in solving nonconvex optimization problems. It is suitable for advanced undergraduate and graduate students in courses on advanced numerical analysis, data science, numerical optimization, and approximation theory.
An Introduction to Convexity, Optimization, and Algorithms

This concise, self-contained volume introduces convex analysis and optimization algorithms, with an emphasis on bridging the two areas. It explores cutting-edge algorithms—such as the proximal gradient, Douglas–Rachford, Peaceman–Rachford, and FISTA—that have applications in machine learning, signal processing, image reconstruction, and other fields. An Introduction to Convexity, Optimization, and Algorithms contains algorithms illustrated by Julia examples and more than 200 exercises that enhance the reader’s understanding of the topic. Clear explanations and step-by-step algorithmic descriptions facilitate self-study for individuals looking to enhance their expertise in convex analysis and optimization. Designed for courses in convex analysis, numerical optimization, and related subjects, this volume is intended for undergraduate and graduate students in mathematics, computer science, and engineering. Its concise length makes it ideal for a one-semester course. Researchers and professionals in applied areas, such as data science and machine learning, will find insights relevant to their work.