Modern Map Methods In Particle Beam Physics


Download Modern Map Methods In Particle Beam Physics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Modern Map Methods In Particle Beam Physics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Modern Map Methods in Particle Beam Physics


Modern Map Methods in Particle Beam Physics

Author:

language: en

Publisher: Academic Press

Release Date: 1999-09-22


DOWNLOAD





Advances in Imaging & Electron Physics merges two long-running serials--Advances in Electronics & Electron Physics and Advances in Optical & Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.

Computational Science — ICCS 2002


Computational Science — ICCS 2002

Author: Peter M.A. Sloot

language: en

Publisher: Springer

Release Date: 2003-08-01


DOWNLOAD





Computational Science is the scientific discipline that aims at the development and understanding of new computational methods and techniques to model and simulate complex systems. The area of application includes natural systems - such as biology environ mental and geo-sciences, physics, and chemistry - and synthetic systems such as electronics and financial and economic systems. The discipline is a bridge bet ween 'classical' computer science - logic, complexity, architecture, algorithm- mathematics, and the use of computers in the aforementioned areas. The relevance for society stems from the numerous challenges that exist in the various science and engineering disciplines, which can be tackled by advances made in this field. For instance new models and methods to study environmental issues like the quality of air, water, and soil, and weather and climate predictions through simulations, as well as the simulation-supported development of cars, airplanes, and medical and transport systems etc. Paraphrasing R. Kenway (R.D. Kenway, Contemporary Physics. 1994): 'There is an important message to scientists, politicians, and industrialists: in the future science, the best industrial design and manufacture, the greatest medical progress, and the most accurate environmental monitoring and forecasting will be done by countries that most rapidly exploit the full potential of computational science'. Nowadays we have access to high-end computer architectures and a large range of computing environments, mainly as a consequence of the enormous sti mulus from the various international programs on advanced computing, e.g.

Geometrical Charged-Particle Optics


Geometrical Charged-Particle Optics

Author: Harald Rose

language: en

Publisher: Springer

Release Date: 2013-02-02


DOWNLOAD





This second edition is an extended version of the first edition of Geometrical Charged-Particle Optics. The updated reference monograph is intended as a guide for researchers and graduate students who are seeking a comprehensive treatment of the design of instruments and beam-guiding systems of charged particles and their propagation in electromagnetic fields. Wave aspects are included in this edition for explaining electron holography, the Aharanov-Bohm effect and the resolution of electron microscopes limited by diffraction. Several methods for calculating the electromagnetic field are presented and procedures are outlined for calculating the properties of systems with arbitrarily curved axis. Detailed methods are presented for designing and optimizing special components such as aberration correctors, spectrometers, energy filters monochromators, ion traps, electron mirrors and cathode lenses. In particular, the optics of rotationally symmetric lenses, quadrupoles, and systems composed of these elements are discussed extensively. Beam properties such as emittance, brightness, transmissivity and the formation of caustics are outlined. Relativistic motion and spin precession of the electron are treated in a covariant way by introducing the Lorentz-invariant universal time and by extending Hamilton’s principle from three to four spatial dimensions where the laboratory time is considered as the fourth pseudo-spatial coordinate. Using this procedure and introducing the self action of the electron, its accompanying electromagnetic field and its radiation field are calculated for arbitrary motion. In addition, the Stern-Gerlach effect is revisited for atomic and free electrons.


Recent Search