Modern Discrete Probability

Download Modern Discrete Probability PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Modern Discrete Probability book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Modern Discrete Probability

Author: Sébastien Roch
language: en
Publisher: Cambridge University Press
Release Date: 2024-01-18
Providing a graduate-level introduction to discrete probability and its applications, this book develops a toolkit of essential techniques for analysing stochastic processes on graphs, other random discrete structures, and algorithms. Topics covered include the first and second moment methods, concentration inequalities, coupling and stochastic domination, martingales and potential theory, spectral methods, and branching processes. Each chapter expands on a fundamental technique, outlining common uses and showing them in action on simple examples and more substantial classical results. The focus is predominantly on non-asymptotic methods and results. All chapters provide a detailed background review section, plus exercises and signposts to the wider literature. Readers are assumed to have undergraduate-level linear algebra and basic real analysis, while prior exposure to graduate-level probability is recommended. This much-needed broad overview of discrete probability could serve as a textbook or as a reference for researchers in mathematics, statistics, data science, computer science and engineering.
An Introduction to the Theory of Probability

The Theory of Probability is a major tool that can be used to explain and understand the various phenomena in different natural, physical and social sciences. This book provides a systematic exposition of the theory in a setting which contains a balanced mixture of the classical approach and the modern day axiomatic approach. After reviewing the basis of the theory, the book considers univariate distributions, bivariate normal distribution, multinomial distribution and convergence of random variables. Difficult ideas have been explained lucidly and have been augmented with explanatory notes, examples and exercises. The basic requirement for reading this book is simply a knowledge of mathematics at graduate level. This book tries to explain the difficult ideas in the axiomatic approach to the theory of probability in a clear and comprehensible manner. It includes several unusual distributions including the power series distribution that have been covered in great detail. Readers will find many worked-out examples and exercises with hints, which will make the book easily readable and engaging. The author is a former Professor of the Indian Statistical Institute, India.