Modern Data Science With Python Techniques And Applications


Download Modern Data Science With Python Techniques And Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Modern Data Science With Python Techniques And Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Modern Data Science with Python: Techniques and Applications


Modern Data Science with Python: Techniques and Applications

Author: Dr.Sudhakar.K

language: en

Publisher: Leilani Katie Publication

Release Date: 2024-06-12


DOWNLOAD





Dr.Sudhakar.K, Associate Professor, Department of Artificial Intelligence & Data Science, NITTE Meenakshi Institute of Technology, Bangalore, Karnataka, India. Mrs.Sangeetha Suresh Harikantra, Assistant Professor, Department of Artificial Intelligence & Data Science, NITTE Meenakshi Institute of Technology, Bangalore, Karnataka, India. Mrs.Anu.D, Assistant Professor, Department of Artificial Intelligence & Data Science, NITTE Meenakshi Institute of Technology, Bangalore, Karnataka, India. Mrs.Rajeshwari Patil, Assistant Professor, Department of Artificial Intelligence & Data Science, NITTE Meenakshi Institute of Technology, Bangalore, Karnataka, India.

Python Data Science Essentials


Python Data Science Essentials

Author: MARK JOHN LADO

language: en

Publisher: Amazon Digital Services LLC - Kdp

Release Date: 2024-03-18


DOWNLOAD





The field of data science has emerged as a critical component in extracting actionable insights and making informed decisions from vast amounts of data. This comprehensive guide explores the fundamentals of data science using the Python language, a versatile toolset widely adopted in the industry. The journey begins with an introduction to data science, outlining its principles, methodologies, and real-world applications. Next, the basics of Python programming are covered, providing a solid foundation for data manipulation and analysis. Data types and structures in Python are then explored, followed by an in-depth look at essential libraries such as NumPy and Pandas, which facilitate efficient data handling and manipulation. The importance of data visualization is emphasized through tutorials on Matplotlib and Seaborn, enabling effective communication of insights and trends. Data cleaning and preprocessing techniques are discussed, addressing common challenges in data quality and preparation. Statistical analysis is introduced as a fundamental aspect of data science, showcasing its applications in hypothesis testing, correlation analysis, and regression modeling using Python. Machine learning concepts are then explored, covering both supervised and unsupervised learning algorithms, including linear regression, decision trees, clustering, and dimensionality reduction. Model evaluation and validation techniques are essential for assessing model performance and generalization ability, ensuring robust and reliable predictions. Additionally, an introduction to deep learning with Python provides insights into advanced neural network architectures and their applications in solving complex problems. Handling big data is a critical aspect of modern data science, and this guide provides an overview of using Python and Spark for scalable and distributed data processing. Real-world case studies across various domains illustrate the practical applications of data science techniques, from e-commerce recommendation systems to healthcare analytics. Finally, best practices and tips for data science projects are discussed, highlighting key considerations for project success, including data exploration, feature engineering, model selection, and collaboration. By mastering these fundamentals, aspiring data scientists can embark on their journey with confidence, equipped to tackle real-world challenges and drive impactful insights from data.

The Data Science Workshop


The Data Science Workshop

Author: Anthony So

language: en

Publisher: Packt Publishing Ltd

Release Date: 2020-01-29


DOWNLOAD





Cut through the noise and get real results with a step-by-step approach to data science Key Features Ideal for the data science beginner who is getting started for the first time A data science tutorial with step-by-step exercises and activities that help build key skills Structured to let you progress at your own pace, on your own terms Use your physical print copy to redeem free access to the online interactive edition Book DescriptionYou already know you want to learn data science, and a smarter way to learn data science is to learn by doing. The Data Science Workshop focuses on building up your practical skills so that you can understand how to develop simple machine learning models in Python or even build an advanced model for detecting potential bank frauds with effective modern data science. You'll learn from real examples that lead to real results. Throughout The Data Science Workshop, you'll take an engaging step-by-step approach to understanding data science. You won't have to sit through any unnecessary theory. If you're short on time you can jump into a single exercise each day or spend an entire weekend training a model using sci-kit learn. It's your choice. Learning on your terms, you'll build up and reinforce key skills in a way that feels rewarding. Every physical print copy of The Data Science Workshop unlocks access to the interactive edition. With videos detailing all exercises and activities, you'll always have a guided solution. You can also benchmark yourself against assessments, track progress, and receive content updates. You'll even earn a secure credential that you can share and verify online upon completion. It's a premium learning experience that's included with your printed copy. To redeem, follow the instructions located at the start of your data science book. Fast-paced and direct, The Data Science Workshop is the ideal companion for data science beginners. You'll learn about machine learning algorithms like a data scientist, learning along the way. This process means that you'll find that your new skills stick, embedded as best practice. A solid foundation for the years ahead.What you will learn Find out the key differences between supervised and unsupervised learning Manipulate and analyze data using scikit-learn and pandas libraries Learn about different algorithms such as regression, classification, and clustering Discover advanced techniques to improve model ensembling and accuracy Speed up the process of creating new features with automated feature tool Simplify machine learning using open source Python packages Who this book is forOur goal at Packt is to help you be successful, in whatever it is you choose to do. The Data Science Workshop is an ideal data science tutorial for the data science beginner who is just getting started. Pick up a Workshop today and let Packt help you develop skills that stick with you for life.